/ 2 \ (x - 1)*\x + x + 1/ -------------------- 3 x
((x - 1)*(x^2 + x + 1))/x^3
Apply the quotient rule, which is:
and .
To find :
Apply the product rule:
; to find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
; to find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
Apply the power rule: goes to
The result is:
The result is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 / 2 \ 1 + x + x + (1 + 2*x)*(x - 1) 3*(x - 1)*\x + x + 1/ ------------------------------ - ---------------------- 3 4 x x
/ 2 / 2\\ | 1 + x + x + (1 + 2*x)*(-1 + x) 2*(-1 + x)*\1 + x + x /| 6*|1 - ------------------------------- + -----------------------| | 2 3 | \ x x / ----------------------------------------------------------------- 2 x
/ / 2 \ / 2\\ | 3*\1 + x + x + (1 + 2*x)*(-1 + x)/ 5*(-1 + x)*\1 + x + x /| 12*|-4 + ----------------------------------- - -----------------------| | 2 3 | \ x x / ----------------------------------------------------------------------- 3 x