Mister Exam

Other calculators


y=(x-1)(x²+x+1)/(x³)

Derivative of y=(x-1)(x²+x+1)/(x³)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        / 2        \
(x - 1)*\x  + x + 1/
--------------------
          3         
         x          
$$\frac{\left(x - 1\right) \left(\left(x^{2} + x\right) + 1\right)}{x^{3}}$$
((x - 1)*(x^2 + x + 1))/x^3
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the product rule:

      ; to find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      ; to find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        3. Apply the power rule: goes to

        The result is:

      The result is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         2                                 / 2        \
1 + x + x  + (1 + 2*x)*(x - 1)   3*(x - 1)*\x  + x + 1/
------------------------------ - ----------------------
               3                            4          
              x                            x           
$$\frac{x^{2} + x + \left(x - 1\right) \left(2 x + 1\right) + 1}{x^{3}} - \frac{3 \left(x - 1\right) \left(\left(x^{2} + x\right) + 1\right)}{x^{4}}$$
The second derivative [src]
  /             2                                   /         2\\
  |    1 + x + x  + (1 + 2*x)*(-1 + x)   2*(-1 + x)*\1 + x + x /|
6*|1 - ------------------------------- + -----------------------|
  |                    2                             3          |
  \                   x                             x           /
-----------------------------------------------------------------
                                 2                               
                                x                                
$$\frac{6 \left(1 - \frac{x^{2} + x + \left(x - 1\right) \left(2 x + 1\right) + 1}{x^{2}} + \frac{2 \left(x - 1\right) \left(x^{2} + x + 1\right)}{x^{3}}\right)}{x^{2}}$$
The third derivative [src]
   /       /         2                     \              /         2\\
   |     3*\1 + x + x  + (1 + 2*x)*(-1 + x)/   5*(-1 + x)*\1 + x + x /|
12*|-4 + ----------------------------------- - -----------------------|
   |                       2                               3          |
   \                      x                               x           /
-----------------------------------------------------------------------
                                    3                                  
                                   x                                   
$$\frac{12 \left(-4 + \frac{3 \left(x^{2} + x + \left(x - 1\right) \left(2 x + 1\right) + 1\right)}{x^{2}} - \frac{5 \left(x - 1\right) \left(x^{2} + x + 1\right)}{x^{3}}\right)}{x^{3}}$$
The graph
Derivative of y=(x-1)(x²+x+1)/(x³)