Mister Exam

Other calculators


y=(x-(3x-1)^1/2)^1/2

Derivative of y=(x-(3x-1)^1/2)^1/2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _________________
  /       _________ 
\/  x - \/ 3*x - 1  
$$\sqrt{x - \sqrt{3 x - 1}}$$
sqrt(x - sqrt(3*x - 1))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            2. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
 1         3        
 - - -------------  
 2       _________  
     4*\/ 3*x - 1   
--------------------
   _________________
  /       _________ 
\/  x - \/ 3*x - 1  
$$\frac{\frac{1}{2} - \frac{3}{4 \sqrt{3 x - 1}}}{\sqrt{x - \sqrt{3 x - 1}}}$$
The second derivative [src]
                                  2
                /         3      \ 
                |2 - ------------| 
                |      __________| 
      18        \    \/ -1 + 3*x / 
------------- - -------------------
          3/2           __________ 
(-1 + 3*x)        x - \/ -1 + 3*x  
-----------------------------------
            __________________     
           /       __________      
      16*\/  x - \/ -1 + 3*x       
$$\frac{- \frac{\left(2 - \frac{3}{\sqrt{3 x - 1}}\right)^{2}}{x - \sqrt{3 x - 1}} + \frac{18}{\left(3 x - 1\right)^{\frac{3}{2}}}}{16 \sqrt{x - \sqrt{3 x - 1}}}$$
The third derivative [src]
  /                                    3                                   \
  |                  /         3      \            /         3      \      |
  |                  |2 - ------------|         18*|2 - ------------|      |
  |                  |      __________|            |      __________|      |
  |       108        \    \/ -1 + 3*x /            \    \/ -1 + 3*x /      |
3*|- ------------- + ------------------- - --------------------------------|
  |            5/2                     2             3/2 /      __________\|
  |  (-1 + 3*x)      /      __________\    (-1 + 3*x)   *\x - \/ -1 + 3*x /|
  \                  \x - \/ -1 + 3*x /                                    /
----------------------------------------------------------------------------
                                __________________                          
                               /       __________                           
                          64*\/  x - \/ -1 + 3*x                            
$$\frac{3 \left(\frac{\left(2 - \frac{3}{\sqrt{3 x - 1}}\right)^{3}}{\left(x - \sqrt{3 x - 1}\right)^{2}} - \frac{18 \left(2 - \frac{3}{\sqrt{3 x - 1}}\right)}{\left(x - \sqrt{3 x - 1}\right) \left(3 x - 1\right)^{\frac{3}{2}}} - \frac{108}{\left(3 x - 1\right)^{\frac{5}{2}}}\right)}{64 \sqrt{x - \sqrt{3 x - 1}}}$$
The graph
Derivative of y=(x-(3x-1)^1/2)^1/2