Mister Exam

Other calculators


y=x/sqrt(sqr(x)+9)

Derivative of y=x/sqrt(sqr(x)+9)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x     
-----------
   ________
  /  2     
\/  x  + 9 
$$\frac{x}{\sqrt{x^{2} + 9}}$$
x/sqrt(x^2 + 9)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                    2    
     1             x     
----------- - -----------
   ________           3/2
  /  2        / 2    \   
\/  x  + 9    \x  + 9/   
$$- \frac{x^{2}}{\left(x^{2} + 9\right)^{\frac{3}{2}}} + \frac{1}{\sqrt{x^{2} + 9}}$$
The second derivative [src]
  /         2 \
  |      3*x  |
x*|-3 + ------|
  |          2|
  \     9 + x /
---------------
          3/2  
  /     2\     
  \9 + x /     
$$\frac{x \left(\frac{3 x^{2}}{x^{2} + 9} - 3\right)}{\left(x^{2} + 9\right)^{\frac{3}{2}}}$$
The third derivative [src]
  /                 /         2 \\
  |               2 |      5*x  ||
  |              x *|-3 + ------||
  |         2       |          2||
  |      3*x        \     9 + x /|
3*|-1 + ------ - ----------------|
  |          2             2     |
  \     9 + x         9 + x      /
----------------------------------
                   3/2            
           /     2\               
           \9 + x /               
$$\frac{3 \left(- \frac{x^{2} \left(\frac{5 x^{2}}{x^{2} + 9} - 3\right)}{x^{2} + 9} + \frac{3 x^{2}}{x^{2} + 9} - 1\right)}{\left(x^{2} + 9\right)^{\frac{3}{2}}}$$
The graph
Derivative of y=x/sqrt(sqr(x)+9)