Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of sine is cosine:
; to find :
-
The derivative of is .
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
2 3 2
x *sin(x) + x *cos(x)*log(x) + 3*x *log(x)*sin(x)
$$x^{3} \log{\left(x \right)} \cos{\left(x \right)} + 3 x^{2} \log{\left(x \right)} \sin{\left(x \right)} + x^{2} \sin{\left(x \right)}$$
The second derivative
[src]
/ 2 \
x*\5*sin(x) + 2*x*cos(x) + 6*log(x)*sin(x) - x *log(x)*sin(x) + 6*x*cos(x)*log(x)/
$$x \left(- x^{2} \log{\left(x \right)} \sin{\left(x \right)} + 6 x \log{\left(x \right)} \cos{\left(x \right)} + 2 x \cos{\left(x \right)} + 6 \log{\left(x \right)} \sin{\left(x \right)} + 5 \sin{\left(x \right)}\right)$$
2 3 2
11*sin(x) - 3*x *sin(x) + 6*log(x)*sin(x) + 15*x*cos(x) - x *cos(x)*log(x) - 9*x *log(x)*sin(x) + 18*x*cos(x)*log(x)
$$- x^{3} \log{\left(x \right)} \cos{\left(x \right)} - 9 x^{2} \log{\left(x \right)} \sin{\left(x \right)} - 3 x^{2} \sin{\left(x \right)} + 18 x \log{\left(x \right)} \cos{\left(x \right)} + 15 x \cos{\left(x \right)} + 6 \log{\left(x \right)} \sin{\left(x \right)} + 11 \sin{\left(x \right)}$$
The third derivative
[src]
2 3 2
11*sin(x) - 3*x *sin(x) + 6*log(x)*sin(x) + 15*x*cos(x) - x *cos(x)*log(x) - 9*x *log(x)*sin(x) + 18*x*cos(x)*log(x)
$$- x^{3} \log{\left(x \right)} \cos{\left(x \right)} - 9 x^{2} \log{\left(x \right)} \sin{\left(x \right)} - 3 x^{2} \sin{\left(x \right)} + 18 x \log{\left(x \right)} \cos{\left(x \right)} + 15 x \cos{\left(x \right)} + 6 \log{\left(x \right)} \sin{\left(x \right)} + 11 \sin{\left(x \right)}$$