Mister Exam

Derivative of y=x^3sinx*lnx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3              
x *sin(x)*log(x)
$$x^{3} \log{\left(x \right)} \sin{\left(x \right)}$$
d / 3              \
--\x *sin(x)*log(x)/
dx                  
$$\frac{d}{d x} x^{3} \log{\left(x \right)} \sin{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. The derivative of sine is cosine:

    ; to find :

    1. The derivative of is .

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 2           3                    2              
x *sin(x) + x *cos(x)*log(x) + 3*x *log(x)*sin(x)
$$x^{3} \log{\left(x \right)} \cos{\left(x \right)} + 3 x^{2} \log{\left(x \right)} \sin{\left(x \right)} + x^{2} \sin{\left(x \right)}$$
The second derivative [src]
  /                                           2                                  \
x*\5*sin(x) + 2*x*cos(x) + 6*log(x)*sin(x) - x *log(x)*sin(x) + 6*x*cos(x)*log(x)/
$$x \left(- x^{2} \log{\left(x \right)} \sin{\left(x \right)} + 6 x \log{\left(x \right)} \cos{\left(x \right)} + 2 x \cos{\left(x \right)} + 6 \log{\left(x \right)} \sin{\left(x \right)} + 5 \sin{\left(x \right)}\right)$$
3-th derivative [src]
               2                                           3                    2                                   
11*sin(x) - 3*x *sin(x) + 6*log(x)*sin(x) + 15*x*cos(x) - x *cos(x)*log(x) - 9*x *log(x)*sin(x) + 18*x*cos(x)*log(x)
$$- x^{3} \log{\left(x \right)} \cos{\left(x \right)} - 9 x^{2} \log{\left(x \right)} \sin{\left(x \right)} - 3 x^{2} \sin{\left(x \right)} + 18 x \log{\left(x \right)} \cos{\left(x \right)} + 15 x \cos{\left(x \right)} + 6 \log{\left(x \right)} \sin{\left(x \right)} + 11 \sin{\left(x \right)}$$
The third derivative [src]
               2                                           3                    2                                   
11*sin(x) - 3*x *sin(x) + 6*log(x)*sin(x) + 15*x*cos(x) - x *cos(x)*log(x) - 9*x *log(x)*sin(x) + 18*x*cos(x)*log(x)
$$- x^{3} \log{\left(x \right)} \cos{\left(x \right)} - 9 x^{2} \log{\left(x \right)} \sin{\left(x \right)} - 3 x^{2} \sin{\left(x \right)} + 18 x \log{\left(x \right)} \cos{\left(x \right)} + 15 x \cos{\left(x \right)} + 6 \log{\left(x \right)} \sin{\left(x \right)} + 11 \sin{\left(x \right)}$$
The graph
Derivative of y=x^3sinx*lnx