Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
2 2 3
3*x *cos (x) - 2*x *cos(x)*sin(x)
$$- 2 x^{3} \sin{\left(x \right)} \cos{\left(x \right)} + 3 x^{2} \cos^{2}{\left(x \right)}$$
The second derivative
[src]
/ 2 2 / 2 2 \ \
2*x*\3*cos (x) + x *\sin (x) - cos (x)/ - 6*x*cos(x)*sin(x)/
$$2 x \left(x^{2} \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) - 6 x \sin{\left(x \right)} \cos{\left(x \right)} + 3 \cos^{2}{\left(x \right)}\right)$$
The third derivative
[src]
/ 2 2 / 2 2 \ 3 \
2*\3*cos (x) + 9*x *\sin (x) - cos (x)/ - 18*x*cos(x)*sin(x) + 4*x *cos(x)*sin(x)/
$$2 \left(4 x^{3} \sin{\left(x \right)} \cos{\left(x \right)} + 9 x^{2} \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) - 18 x \sin{\left(x \right)} \cos{\left(x \right)} + 3 \cos^{2}{\left(x \right)}\right)$$