Mister Exam

Derivative of y=x^3cos^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3    2   
x *cos (x)
$$x^{3} \cos^{2}{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   2    2         3              
3*x *cos (x) - 2*x *cos(x)*sin(x)
$$- 2 x^{3} \sin{\left(x \right)} \cos{\left(x \right)} + 3 x^{2} \cos^{2}{\left(x \right)}$$
The second derivative [src]
    /     2       2 /   2         2   \                    \
2*x*\3*cos (x) + x *\sin (x) - cos (x)/ - 6*x*cos(x)*sin(x)/
$$2 x \left(x^{2} \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) - 6 x \sin{\left(x \right)} \cos{\left(x \right)} + 3 \cos^{2}{\left(x \right)}\right)$$
The third derivative [src]
  /     2         2 /   2         2   \                           3              \
2*\3*cos (x) + 9*x *\sin (x) - cos (x)/ - 18*x*cos(x)*sin(x) + 4*x *cos(x)*sin(x)/
$$2 \left(4 x^{3} \sin{\left(x \right)} \cos{\left(x \right)} + 9 x^{2} \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) - 18 x \sin{\left(x \right)} \cos{\left(x \right)} + 3 \cos^{2}{\left(x \right)}\right)$$
The graph
Derivative of y=x^3cos^2x