Mister Exam

Other calculators


y=xcos(2x^3+1)

Derivative of y=xcos(2x^3+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   3    \
x*cos\2*x  + 1/
$$x \cos{\left(2 x^{3} + 1 \right)}$$
x*cos(2*x^3 + 1)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     3    /   3    \      /   3    \
- 6*x *sin\2*x  + 1/ + cos\2*x  + 1/
$$- 6 x^{3} \sin{\left(2 x^{3} + 1 \right)} + \cos{\left(2 x^{3} + 1 \right)}$$
The second derivative [src]
     2 /     /       3\      3    /       3\\
-12*x *\2*sin\1 + 2*x / + 3*x *cos\1 + 2*x //
$$- 12 x^{2} \left(3 x^{3} \cos{\left(2 x^{3} + 1 \right)} + 2 \sin{\left(2 x^{3} + 1 \right)}\right)$$
The third derivative [src]
      /     /       3\       6    /       3\       3    /       3\\
-12*x*\4*sin\1 + 2*x / - 18*x *sin\1 + 2*x / + 27*x *cos\1 + 2*x //
$$- 12 x \left(- 18 x^{6} \sin{\left(2 x^{3} + 1 \right)} + 27 x^{3} \cos{\left(2 x^{3} + 1 \right)} + 4 \sin{\left(2 x^{3} + 1 \right)}\right)$$
The graph
Derivative of y=xcos(2x^3+1)