Mister Exam

Derivative of y=(x⁴-x²+1)³

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             3
/ 4    2    \ 
\x  - x  + 1/ 
$$\left(\left(x^{4} - x^{2}\right) + 1\right)^{3}$$
(x^4 - x^2 + 1)^3
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
             2               
/ 4    2    \  /           3\
\x  - x  + 1/ *\-6*x + 12*x /
$$\left(12 x^{3} - 6 x\right) \left(\left(x^{4} - x^{2}\right) + 1\right)^{2}$$
The second derivative [src]
  /                                            2\              
  |/        2\ /     4    2\      2 /        2\ | /     4    2\
6*\\-1 + 6*x /*\1 + x  - x / + 4*x *\-1 + 2*x / /*\1 + x  - x /
$$6 \left(4 x^{2} \left(2 x^{2} - 1\right)^{2} + \left(6 x^{2} - 1\right) \left(x^{4} - x^{2} + 1\right)\right) \left(x^{4} - x^{2} + 1\right)$$
The third derivative [src]
     /               2                   3                                          \
     |  /     4    2\       2 /        2\      /        2\ /        2\ /     4    2\|
24*x*\3*\1 + x  - x /  + 2*x *\-1 + 2*x /  + 3*\-1 + 2*x /*\-1 + 6*x /*\1 + x  - x //
$$24 x \left(2 x^{2} \left(2 x^{2} - 1\right)^{3} + 3 \left(2 x^{2} - 1\right) \left(6 x^{2} - 1\right) \left(x^{4} - x^{2} + 1\right) + 3 \left(x^{4} - x^{2} + 1\right)^{2}\right)$$
The graph
Derivative of y=(x⁴-x²+1)³