Mister Exam

Derivative of y=(x⁴-x²+1)³

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             3
/ 4    2    \ 
\x  - x  + 1/ 
((x4x2)+1)3\left(\left(x^{4} - x^{2}\right) + 1\right)^{3}
(x^4 - x^2 + 1)^3
Detail solution
  1. Let u=(x4x2)+1u = \left(x^{4} - x^{2}\right) + 1.

  2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

  3. Then, apply the chain rule. Multiply by ddx((x4x2)+1)\frac{d}{d x} \left(\left(x^{4} - x^{2}\right) + 1\right):

    1. Differentiate (x4x2)+1\left(x^{4} - x^{2}\right) + 1 term by term:

      1. Differentiate x4x2x^{4} - x^{2} term by term:

        1. Apply the power rule: x4x^{4} goes to 4x34 x^{3}

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x2x^{2} goes to 2x2 x

          So, the result is: 2x- 2 x

        The result is: 4x32x4 x^{3} - 2 x

      2. The derivative of the constant 11 is zero.

      The result is: 4x32x4 x^{3} - 2 x

    The result of the chain rule is:

    3(4x32x)((x4x2)+1)23 \left(4 x^{3} - 2 x\right) \left(\left(x^{4} - x^{2}\right) + 1\right)^{2}

  4. Now simplify:

    6x(2x21)(x4x2+1)26 x \left(2 x^{2} - 1\right) \left(x^{4} - x^{2} + 1\right)^{2}


The answer is:

6x(2x21)(x4x2+1)26 x \left(2 x^{2} - 1\right) \left(x^{4} - x^{2} + 1\right)^{2}

The graph
02468-8-6-4-2-1010-25000000000002500000000000
The first derivative [src]
             2               
/ 4    2    \  /           3\
\x  - x  + 1/ *\-6*x + 12*x /
(12x36x)((x4x2)+1)2\left(12 x^{3} - 6 x\right) \left(\left(x^{4} - x^{2}\right) + 1\right)^{2}
The second derivative [src]
  /                                            2\              
  |/        2\ /     4    2\      2 /        2\ | /     4    2\
6*\\-1 + 6*x /*\1 + x  - x / + 4*x *\-1 + 2*x / /*\1 + x  - x /
6(4x2(2x21)2+(6x21)(x4x2+1))(x4x2+1)6 \left(4 x^{2} \left(2 x^{2} - 1\right)^{2} + \left(6 x^{2} - 1\right) \left(x^{4} - x^{2} + 1\right)\right) \left(x^{4} - x^{2} + 1\right)
The third derivative [src]
     /               2                   3                                          \
     |  /     4    2\       2 /        2\      /        2\ /        2\ /     4    2\|
24*x*\3*\1 + x  - x /  + 2*x *\-1 + 2*x /  + 3*\-1 + 2*x /*\-1 + 6*x /*\1 + x  - x //
24x(2x2(2x21)3+3(2x21)(6x21)(x4x2+1)+3(x4x2+1)2)24 x \left(2 x^{2} \left(2 x^{2} - 1\right)^{3} + 3 \left(2 x^{2} - 1\right) \left(6 x^{2} - 1\right) \left(x^{4} - x^{2} + 1\right) + 3 \left(x^{4} - x^{2} + 1\right)^{2}\right)
The graph
Derivative of y=(x⁴-x²+1)³