Mister Exam

Derivative of y=x⁴cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 4       
x *cos(x)
$$x^{4} \cos{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. The derivative of cosine is negative sine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   4             3       
- x *sin(x) + 4*x *cos(x)
$$- x^{4} \sin{\left(x \right)} + 4 x^{3} \cos{\left(x \right)}$$
The second derivative [src]
 2 /             2                    \
x *\12*cos(x) - x *cos(x) - 8*x*sin(x)/
$$x^{2} \left(- x^{2} \cos{\left(x \right)} - 8 x \sin{\left(x \right)} + 12 \cos{\left(x \right)}\right)$$
The third derivative [src]
  /             3                            2       \
x*\24*cos(x) + x *sin(x) - 36*x*sin(x) - 12*x *cos(x)/
$$x \left(x^{3} \sin{\left(x \right)} - 12 x^{2} \cos{\left(x \right)} - 36 x \sin{\left(x \right)} + 24 \cos{\left(x \right)}\right)$$
The graph
Derivative of y=x⁴cosx