3 / 2 \ x *log\x + 4*x/
d / 3 / 2 \\ --\x *log\x + 4*x// dx
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
3 2 / 2 \ x *(4 + 2*x) 3*x *log\x + 4*x/ + ------------ 2 x + 4*x
/ / 2\\ | | 2*(2 + x) || | x*|1 - ----------|| | 6*(2 + x) \ x*(4 + x) /| 2*x*|3*log(x*(4 + x)) + --------- + ------------------| \ 4 + x 4 + x /
/ / 2\ / 2\\ | | 2*(2 + x) | | 4*(2 + x) || | 9*x*|1 - ----------| 2*x*(2 + x)*|3 - ----------|| | 18*(2 + x) \ x*(4 + x) / \ x*(4 + x) /| 2*|3*log(x*(4 + x)) + ---------- + -------------------- - ----------------------------| | 4 + x 4 + x 2 | \ (4 + x) /