Mister Exam

Derivative of y=x³ln(x²+4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3    / 2      \
x *log\x  + 4*x/
x3log(x2+4x)x^{3} \log{\left(x^{2} + 4 x \right)}
d / 3    / 2      \\
--\x *log\x  + 4*x//
dx                  
ddxx3log(x2+4x)\frac{d}{d x} x^{3} \log{\left(x^{2} + 4 x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x3f{\left(x \right)} = x^{3}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    g(x)=log(x2+4x)g{\left(x \right)} = \log{\left(x^{2} + 4 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x2+4xu = x^{2} + 4 x.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx(x2+4x)\frac{d}{d x} \left(x^{2} + 4 x\right):

      1. Differentiate x2+4xx^{2} + 4 x term by term:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 44

        The result is: 2x+42 x + 4

      The result of the chain rule is:

      2x+4x2+4x\frac{2 x + 4}{x^{2} + 4 x}

    The result is: x3(2x+4)x2+4x+3x2log(x2+4x)\frac{x^{3} \cdot \left(2 x + 4\right)}{x^{2} + 4 x} + 3 x^{2} \log{\left(x^{2} + 4 x \right)}

  2. Now simplify:

    x2(2x+3(x+4)log(x(x+4))+4)x+4\frac{x^{2} \cdot \left(2 x + 3 \left(x + 4\right) \log{\left(x \left(x + 4\right) \right)} + 4\right)}{x + 4}


The answer is:

x2(2x+3(x+4)log(x(x+4))+4)x+4\frac{x^{2} \cdot \left(2 x + 3 \left(x + 4\right) \log{\left(x \left(x + 4\right) \right)} + 4\right)}{x + 4}

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
                      3          
   2    / 2      \   x *(4 + 2*x)
3*x *log\x  + 4*x/ + ------------
                        2        
                       x  + 4*x  
x3(2x+4)x2+4x+3x2log(x2+4x)\frac{x^{3} \cdot \left(2 x + 4\right)}{x^{2} + 4 x} + 3 x^{2} \log{\left(x^{2} + 4 x \right)}
The second derivative [src]
    /                                 /             2\\
    |                                 |    2*(2 + x) ||
    |                               x*|1 - ----------||
    |                   6*(2 + x)     \    x*(4 + x) /|
2*x*|3*log(x*(4 + x)) + --------- + ------------------|
    \                     4 + x           4 + x       /
2x(x(12(x+2)2x(x+4))x+4+3log(x(x+4))+6(x+2)x+4)2 x \left(\frac{x \left(1 - \frac{2 \left(x + 2\right)^{2}}{x \left(x + 4\right)}\right)}{x + 4} + 3 \log{\left(x \left(x + 4\right) \right)} + \frac{6 \left(x + 2\right)}{x + 4}\right)
The third derivative [src]
  /                                    /             2\               /             2\\
  |                                    |    2*(2 + x) |               |    4*(2 + x) ||
  |                                9*x*|1 - ----------|   2*x*(2 + x)*|3 - ----------||
  |                   18*(2 + x)       \    x*(4 + x) /               \    x*(4 + x) /|
2*|3*log(x*(4 + x)) + ---------- + -------------------- - ----------------------------|
  |                     4 + x             4 + x                            2          |
  \                                                                 (4 + x)           /
2(9x(12(x+2)2x(x+4))x+42x(34(x+2)2x(x+4))(x+2)(x+4)2+3log(x(x+4))+18(x+2)x+4)2 \cdot \left(\frac{9 x \left(1 - \frac{2 \left(x + 2\right)^{2}}{x \left(x + 4\right)}\right)}{x + 4} - \frac{2 x \left(3 - \frac{4 \left(x + 2\right)^{2}}{x \left(x + 4\right)}\right) \left(x + 2\right)}{\left(x + 4\right)^{2}} + 3 \log{\left(x \left(x + 4\right) \right)} + \frac{18 \left(x + 2\right)}{x + 4}\right)
The graph
Derivative of y=x³ln(x²+4x)