Mister Exam

Derivative of y=x³ln(x²+4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3    / 2      \
x *log\x  + 4*x/
$$x^{3} \log{\left(x^{2} + 4 x \right)}$$
d / 3    / 2      \\
--\x *log\x  + 4*x//
dx                  
$$\frac{d}{d x} x^{3} \log{\left(x^{2} + 4 x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                      3          
   2    / 2      \   x *(4 + 2*x)
3*x *log\x  + 4*x/ + ------------
                        2        
                       x  + 4*x  
$$\frac{x^{3} \cdot \left(2 x + 4\right)}{x^{2} + 4 x} + 3 x^{2} \log{\left(x^{2} + 4 x \right)}$$
The second derivative [src]
    /                                 /             2\\
    |                                 |    2*(2 + x) ||
    |                               x*|1 - ----------||
    |                   6*(2 + x)     \    x*(4 + x) /|
2*x*|3*log(x*(4 + x)) + --------- + ------------------|
    \                     4 + x           4 + x       /
$$2 x \left(\frac{x \left(1 - \frac{2 \left(x + 2\right)^{2}}{x \left(x + 4\right)}\right)}{x + 4} + 3 \log{\left(x \left(x + 4\right) \right)} + \frac{6 \left(x + 2\right)}{x + 4}\right)$$
The third derivative [src]
  /                                    /             2\               /             2\\
  |                                    |    2*(2 + x) |               |    4*(2 + x) ||
  |                                9*x*|1 - ----------|   2*x*(2 + x)*|3 - ----------||
  |                   18*(2 + x)       \    x*(4 + x) /               \    x*(4 + x) /|
2*|3*log(x*(4 + x)) + ---------- + -------------------- - ----------------------------|
  |                     4 + x             4 + x                            2          |
  \                                                                 (4 + x)           /
$$2 \cdot \left(\frac{9 x \left(1 - \frac{2 \left(x + 2\right)^{2}}{x \left(x + 4\right)}\right)}{x + 4} - \frac{2 x \left(3 - \frac{4 \left(x + 2\right)^{2}}{x \left(x + 4\right)}\right) \left(x + 2\right)}{\left(x + 4\right)^{2}} + 3 \log{\left(x \left(x + 4\right) \right)} + \frac{18 \left(x + 2\right)}{x + 4}\right)$$
The graph
Derivative of y=x³ln(x²+4x)