Mister Exam

Other calculators


y=(x³+3x)²/(3x-5)

Derivative of y=(x³+3x)²/(3x-5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          2
/ 3      \ 
\x  + 3*x/ 
-----------
  3*x - 5  
$$\frac{\left(x^{3} + 3 x\right)^{2}}{3 x - 5}$$
(x^3 + 3*x)^2/(3*x - 5)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
              2                        
    / 3      \    /       2\ / 3      \
  3*\x  + 3*x/    \6 + 6*x /*\x  + 3*x/
- ------------- + ---------------------
             2           3*x - 5       
    (3*x - 5)                          
$$\frac{\left(6 x^{2} + 6\right) \left(x^{3} + 3 x\right)}{3 x - 5} - \frac{3 \left(x^{3} + 3 x\right)^{2}}{\left(3 x - 5\right)^{2}}$$
The second derivative [src]
  /                                           2                        \
  |          2                      2 /     2\        /     2\ /     2\|
  |  /     2\       2 /     2\   3*x *\3 + x /    6*x*\1 + x /*\3 + x /|
6*|3*\1 + x /  + 2*x *\3 + x / + -------------- - ---------------------|
  |                                         2            -5 + 3*x      |
  \                               (-5 + 3*x)                           /
------------------------------------------------------------------------
                                -5 + 3*x                                
$$\frac{6 \left(2 x^{2} \left(x^{2} + 3\right) + \frac{3 x^{2} \left(x^{2} + 3\right)^{2}}{\left(3 x - 5\right)^{2}} - \frac{6 x \left(x^{2} + 1\right) \left(x^{2} + 3\right)}{3 x - 5} + 3 \left(x^{2} + 1\right)^{2}\right)}{3 x - 5}$$
The third derivative [src]
  /    /          2                \                                  2                         \
  |    |  /     2\       2 /     2\|                        2 /     2\         /     2\ /     2\|
  |  9*\3*\1 + x /  + 2*x *\3 + x //       /       2\   27*x *\3 + x /    54*x*\1 + x /*\3 + x /|
6*|- ------------------------------- + 4*x*\6 + 5*x / - --------------- + ----------------------|
  |              -5 + 3*x                                           3                    2      |
  \                                                       (-5 + 3*x)           (-5 + 3*x)       /
-------------------------------------------------------------------------------------------------
                                             -5 + 3*x                                            
$$\frac{6 \left(- \frac{27 x^{2} \left(x^{2} + 3\right)^{2}}{\left(3 x - 5\right)^{3}} + 4 x \left(5 x^{2} + 6\right) + \frac{54 x \left(x^{2} + 1\right) \left(x^{2} + 3\right)}{\left(3 x - 5\right)^{2}} - \frac{9 \left(2 x^{2} \left(x^{2} + 3\right) + 3 \left(x^{2} + 1\right)^{2}\right)}{3 x - 5}\right)}{3 x - 5}$$
The graph
Derivative of y=(x³+3x)²/(3x-5)