2 / 3 \ \x + 3*x/ ----------- 3*x - 5
(x^3 + 3*x)^2/(3*x - 5)
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 / 3 \ / 2\ / 3 \ 3*\x + 3*x/ \6 + 6*x /*\x + 3*x/ - ------------- + --------------------- 2 3*x - 5 (3*x - 5)
/ 2 \ | 2 2 / 2\ / 2\ / 2\| | / 2\ 2 / 2\ 3*x *\3 + x / 6*x*\1 + x /*\3 + x /| 6*|3*\1 + x / + 2*x *\3 + x / + -------------- - ---------------------| | 2 -5 + 3*x | \ (-5 + 3*x) / ------------------------------------------------------------------------ -5 + 3*x
/ / 2 \ 2 \ | | / 2\ 2 / 2\| 2 / 2\ / 2\ / 2\| | 9*\3*\1 + x / + 2*x *\3 + x // / 2\ 27*x *\3 + x / 54*x*\1 + x /*\3 + x /| 6*|- ------------------------------- + 4*x*\6 + 5*x / - --------------- + ----------------------| | -5 + 3*x 3 2 | \ (-5 + 3*x) (-5 + 3*x) / ------------------------------------------------------------------------------------------------- -5 + 3*x