y=x³/x²+1
x^3/(x^2) + 1
x^((3/x)^2) + 1
x^3/(x^2 + 1)
x^3*2/x + 1
3 x -- + 1 2 x
/ 3 \ d |x | --|-- + 1| dx| 2 | \x /
Differentiate x3x2+1\frac{x^{3}}{x^{2}} + 1x2x3+1 term by term:
Apply the quotient rule, which is:
f(x)=x3f{\left(x \right)} = x^{3}f(x)=x3 and g(x)=x2g{\left(x \right)} = x^{2}g(x)=x2.
To find ddxf(x)\frac{d}{d x} f{\left(x \right)}dxdf(x):
Apply the power rule: x3x^{3}x3 goes to 3x23 x^{2}3x2
To find ddxg(x)\frac{d}{d x} g{\left(x \right)}dxdg(x):
Apply the power rule: x2x^{2}x2 goes to 2x2 x2x
Now plug in to the quotient rule:
111
The derivative of the constant 111 is zero.
The result is: 111
The answer is:
2 3*x -2 + ---- 2 x
0