Mister Exam

You entered:

y=x³/x²+1

What you mean?

Derivative of y=x³/x²+1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3    
x     
-- + 1
 2    
x     
x3x2+1\frac{x^{3}}{x^{2}} + 1
  / 3    \
d |x     |
--|-- + 1|
dx| 2    |
  \x     /
ddx(x3x2+1)\frac{d}{d x} \left(\frac{x^{3}}{x^{2}} + 1\right)
Detail solution
  1. Differentiate x3x2+1\frac{x^{3}}{x^{2}} + 1 term by term:

    1. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=x3f{\left(x \right)} = x^{3} and g(x)=x2g{\left(x \right)} = x^{2}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      Now plug in to the quotient rule:

      11

    2. The derivative of the constant 11 is zero.

    The result is: 11


The answer is:

11

The first derivative [src]
        2
     3*x 
-2 + ----
       2 
      x  
3x2x22\frac{3 x^{2}}{x^{2}} - 2
The second derivative [src]
0
00
The third derivative [src]
0
00