Mister Exam

Derivative of y=x²sec(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2       
x *sec(x)
$$x^{2} \sec{\left(x \right)}$$
x^2*sec(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Let .

    3. Apply the power rule: goes to

    4. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
              2              
2*x*sec(x) + x *sec(x)*tan(x)
$$x^{2} \tan{\left(x \right)} \sec{\left(x \right)} + 2 x \sec{\left(x \right)}$$
The second derivative [src]
/     2 /         2   \             \       
\2 + x *\1 + 2*tan (x)/ + 4*x*tan(x)/*sec(x)
$$\left(x^{2} \left(2 \tan^{2}{\left(x \right)} + 1\right) + 4 x \tan{\left(x \right)} + 2\right) \sec{\left(x \right)}$$
The third derivative [src]
/               /         2   \    2 /         2   \       \       
\6*tan(x) + 6*x*\1 + 2*tan (x)/ + x *\5 + 6*tan (x)/*tan(x)/*sec(x)
$$\left(x^{2} \left(6 \tan^{2}{\left(x \right)} + 5\right) \tan{\left(x \right)} + 6 x \left(2 \tan^{2}{\left(x \right)} + 1\right) + 6 \tan{\left(x \right)}\right) \sec{\left(x \right)}$$
The graph
Derivative of y=x²sec(x)