Mister Exam

Other calculators

Derivative of y=3/(2sqrt3x-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      3      
-------------
    _____    
2*\/ 3*x  - 2
$$\frac{3}{2 \sqrt{3 x} - 2}$$
3/(2*sqrt(3*x) - 2)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Let .

          2. Apply the power rule: goes to

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
            ___       
       -3*\/ 3        
----------------------
                     2
  ___ /    _____    \ 
\/ x *\2*\/ 3*x  - 2/ 
$$- \frac{3 \sqrt{3}}{\sqrt{x} \left(2 \sqrt{3 x} - 2\right)^{2}}$$
The second derivative [src]
  /  ___                       \
  |\/ 3             6          |
3*|----- + --------------------|
  |  3/2     /       ___   ___\|
  \ x      x*\-1 + \/ 3 *\/ x //
--------------------------------
                         2      
       /       ___   ___\       
     8*\-1 + \/ 3 *\/ x /       
$$\frac{3 \left(\frac{6}{x \left(\sqrt{3} \sqrt{x} - 1\right)} + \frac{\sqrt{3}}{x^{\frac{3}{2}}}\right)}{8 \left(\sqrt{3} \sqrt{x} - 1\right)^{2}}$$
The third derivative [src]
   /  ___                                       ___         \
   |\/ 3              6                     6*\/ 3          |
-9*|----- + --------------------- + ------------------------|
   |  5/2    2 /       ___   ___\                          2|
   | x      x *\-1 + \/ 3 *\/ x /    3/2 /       ___   ___\ |
   \                                x   *\-1 + \/ 3 *\/ x / /
-------------------------------------------------------------
                                         2                   
                       /       ___   ___\                    
                    16*\-1 + \/ 3 *\/ x /                    
$$- \frac{9 \left(\frac{6}{x^{2} \left(\sqrt{3} \sqrt{x} - 1\right)} + \frac{6 \sqrt{3}}{x^{\frac{3}{2}} \left(\sqrt{3} \sqrt{x} - 1\right)^{2}} + \frac{\sqrt{3}}{x^{\frac{5}{2}}}\right)}{16 \left(\sqrt{3} \sqrt{x} - 1\right)^{2}}$$