Detail solution
-
Apply the product rule:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result of the chain rule is:
; to find :
-
The derivative of cosine is negative sine:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
3 2 / 2 \
- tan (x)*sin(x) + tan (x)*\3 + 3*tan (x)/*cos(x)
$$\left(3 \tan^{2}{\left(x \right)} + 3\right) \cos{\left(x \right)} \tan^{2}{\left(x \right)} - \sin{\left(x \right)} \tan^{3}{\left(x \right)}$$
The second derivative
[src]
/ 2 / 2 \ / 2 \ / 2 \ \
\- tan (x)*cos(x) - 6*\1 + tan (x)/*sin(x)*tan(x) + 6*\1 + tan (x)/*\1 + 2*tan (x)/*cos(x)/*tan(x)
$$\left(6 \left(\tan^{2}{\left(x \right)} + 1\right) \left(2 \tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} - 6 \left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \tan{\left(x \right)} - \cos{\left(x \right)} \tan^{2}{\left(x \right)}\right) \tan{\left(x \right)}$$
The third derivative
[src]
/ 2 \
3 2 / 2 \ / 2 \ |/ 2 \ 4 2 / 2 \| / 2 \ / 2 \
tan (x)*sin(x) - 9*tan (x)*\1 + tan (x)/*cos(x) + 6*\1 + tan (x)/*\\1 + tan (x)/ + 2*tan (x) + 7*tan (x)*\1 + tan (x)//*cos(x) - 18*\1 + tan (x)/*\1 + 2*tan (x)/*sin(x)*tan(x)
$$- 18 \left(\tan^{2}{\left(x \right)} + 1\right) \left(2 \tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \tan{\left(x \right)} + 6 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\left(\tan^{2}{\left(x \right)} + 1\right)^{2} + 7 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + 2 \tan^{4}{\left(x \right)}\right) \cos{\left(x \right)} - 9 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} \tan^{2}{\left(x \right)} + \sin{\left(x \right)} \tan^{3}{\left(x \right)}$$