Mister Exam

Other calculators


y=tgx*sin(2x-5)

Derivative of y=tgx*sin(2x-5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(x)*sin(2*x - 5)
$$\sin{\left(2 x - 5 \right)} \tan{\left(x \right)}$$
tan(x)*sin(2*x - 5)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/       2   \                                     
\1 + tan (x)/*sin(2*x - 5) + 2*cos(2*x - 5)*tan(x)
$$\left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(2 x - 5 \right)} + 2 \cos{\left(2 x - 5 \right)} \tan{\left(x \right)}$$
The second derivative [src]
  /                            /       2   \                 /       2   \                     \
2*\-2*sin(-5 + 2*x)*tan(x) + 2*\1 + tan (x)/*cos(-5 + 2*x) + \1 + tan (x)/*sin(-5 + 2*x)*tan(x)/
$$2 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(2 x - 5 \right)} \tan{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(2 x - 5 \right)} - 2 \sin{\left(2 x - 5 \right)} \tan{\left(x \right)}\right)$$
The third derivative [src]
  /    /       2   \                                          /       2   \ /         2   \                   /       2   \                     \
2*\- 6*\1 + tan (x)/*sin(-5 + 2*x) - 4*cos(-5 + 2*x)*tan(x) + \1 + tan (x)/*\1 + 3*tan (x)/*sin(-5 + 2*x) + 6*\1 + tan (x)/*cos(-5 + 2*x)*tan(x)/
$$2 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) \sin{\left(2 x - 5 \right)} - 6 \left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(2 x - 5 \right)} + 6 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(2 x - 5 \right)} \tan{\left(x \right)} - 4 \cos{\left(2 x - 5 \right)} \tan{\left(x \right)}\right)$$
The graph
Derivative of y=tgx*sin(2x-5)