Mister Exam

Derivative of y=tgx/2^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(x)
------
   x  
  2   
$$\frac{\tan{\left(x \right)}}{2^{x}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    To find :

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 -x /       2   \    -x              
2  *\1 + tan (x)/ - 2  *log(2)*tan(x)
$$2^{- x} \left(\tan^{2}{\left(x \right)} + 1\right) - 2^{- x} \log{\left(2 \right)} \tan{\left(x \right)}$$
The second derivative [src]
 -x /   2               /       2   \            /       2   \       \
2  *\log (2)*tan(x) - 2*\1 + tan (x)/*log(2) + 2*\1 + tan (x)/*tan(x)/
$$2^{- x} \left(2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} - 2 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 \right)} + \log{\left(2 \right)}^{2} \tan{\left(x \right)}\right)$$
The third derivative [src]
 -x /     3               /       2   \ /         2   \        2    /       2   \     /       2   \              \
2  *\- log (2)*tan(x) + 2*\1 + tan (x)/*\1 + 3*tan (x)/ + 3*log (2)*\1 + tan (x)/ - 6*\1 + tan (x)/*log(2)*tan(x)/
$$2^{- x} \left(2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) - 6 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 \right)} \tan{\left(x \right)} + 3 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 \right)}^{2} - \log{\left(2 \right)}^{3} \tan{\left(x \right)}\right)$$
The graph
Derivative of y=tgx/2^x