Mister Exam

Derivative of y=tg(x)^ctg(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   cot(x)   
tan      (x)
$$\tan^{\cot{\left(x \right)}}{\left(x \right)}$$
tan(x)^cot(x)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
             /                             /       2   \       \
   cot(x)    |/        2   \               \1 + tan (x)/*cot(x)|
tan      (x)*|\-1 - cot (x)/*log(tan(x)) + --------------------|
             \                                    tan(x)       /
$$\left(\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{\tan{\left(x \right)}} + \left(- \cot^{2}{\left(x \right)} - 1\right) \log{\left(\tan{\left(x \right)} \right)}\right) \tan^{\cot{\left(x \right)}}{\left(x \right)}$$
The second derivative [src]
             /                                                    2                                         2                                                                            \
             |/                              /       2   \       \                             /       2   \             /       2   \ /       2   \                                     |
   cot(x)    ||  /       2   \               \1 + tan (x)/*cot(x)|      /       2   \          \1 + tan (x)/ *cot(x)   2*\1 + cot (x)/*\1 + tan (x)/     /       2   \                   |
tan      (x)*||- \1 + cot (x)/*log(tan(x)) + --------------------|  + 2*\1 + tan (x)/*cot(x) - --------------------- - ----------------------------- + 2*\1 + cot (x)/*cot(x)*log(tan(x))|
             |\                                     tan(x)       /                                       2                         tan(x)                                                |
             \                                                                                        tan (x)                                                                            /
$$\left(\left(\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{\tan{\left(x \right)}} - \left(\cot^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}\right)^{2} - \frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{2} \cot{\left(x \right)}}{\tan^{2}{\left(x \right)}} - \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)}} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} + 2 \left(\cot^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)} \cot{\left(x \right)}\right) \tan^{\cot{\left(x \right)}}{\left(x \right)}$$
The third derivative [src]
             /                                                    3                                                                                          /                                        2                                                                            \                                                 2                                                               3                         2                                                                                     \
             |/                              /       2   \       \                                      /                              /       2   \       \ |                           /       2   \                                                  /       2   \ /       2   \|                  2                 /       2   \                                                   /       2   \             /       2   \  /       2   \                                     /       2   \ /       2   \       |
   cot(x)    ||  /       2   \               \1 + tan (x)/*cot(x)|      /       2   \ /       2   \     |  /       2   \               \1 + tan (x)/*cot(x)| |    /       2   \          \1 + tan (x)/ *cot(x)     /       2   \                      2*\1 + cot (x)/*\1 + tan (x)/|     /       2   \                4*\1 + tan (x)/ *cot(x)        2    /       2   \               2*\1 + tan (x)/ *cot(x)   3*\1 + tan (x)/ *\1 + cot (x)/     /       2   \                 6*\1 + cot (x)/*\1 + tan (x)/*cot(x)|
tan      (x)*||- \1 + cot (x)/*log(tan(x)) + --------------------|  - 6*\1 + cot (x)/*\1 + tan (x)/ - 3*|- \1 + cot (x)/*log(tan(x)) + --------------------|*|- 2*\1 + tan (x)/*cot(x) + --------------------- - 2*\1 + cot (x)/*cot(x)*log(tan(x)) + -----------------------------| - 2*\1 + cot (x)/ *log(tan(x)) - ----------------------- - 4*cot (x)*\1 + cot (x)/*log(tan(x)) + ----------------------- + ------------------------------ + 4*\1 + tan (x)/*cot(x)*tan(x) + ------------------------------------|
             |\                                     tan(x)       /                                      \                                     tan(x)       / |                                     2                                                              tan(x)           |                                           tan(x)                                                            3                            2                                                                 tan(x)               |
             \                                                                                                                                               \                                  tan (x)                                                                            /                                                                                                          tan (x)                      tan (x)                                                                                   /
$$\left(\left(\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{\tan{\left(x \right)}} - \left(\cot^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}\right)^{3} - 3 \left(\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{\tan{\left(x \right)}} - \left(\cot^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}\right) \left(\frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{2} \cot{\left(x \right)}}{\tan^{2}{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)}} - 2 \left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} - 2 \left(\cot^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)} \cot{\left(x \right)}\right) + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{3} \cot{\left(x \right)}}{\tan^{3}{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \left(\cot^{2}{\left(x \right)} + 1\right)}{\tan^{2}{\left(x \right)}} - \frac{4 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \cot{\left(x \right)}}{\tan{\left(x \right)}} - 6 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right) + \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{\tan{\left(x \right)}} + 4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \cot{\left(x \right)} - 2 \left(\cot^{2}{\left(x \right)} + 1\right)^{2} \log{\left(\tan{\left(x \right)} \right)} - 4 \left(\cot^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)} \cot^{2}{\left(x \right)}\right) \tan^{\cot{\left(x \right)}}{\left(x \right)}$$
The graph
Derivative of y=tg(x)^ctg(x)