The first derivative
[src]
2/x\
tan |-|
7 2 5 \3/
- + 2*cot (2*x) + -------------- + -------
3 ___________ 3
/ 2
\/ 1 - 25*x
$$\frac{\tan^{2}{\left(\frac{x}{3} \right)}}{3} + 2 \cot^{2}{\left(2 x \right)} + \frac{7}{3} + \frac{5}{\sqrt{1 - 25 x^{2}}}$$
The second derivative
[src]
/ 2/x\\ /x\
2*|1 + tan |-||*tan|-|
/ 2 \ 125*x \ \3// \3/
- 8*\1 + cot (2*x)/*cot(2*x) + -------------- + ----------------------
3/2 9
/ 2\
\1 - 25*x /
$$\frac{125 x}{\left(1 - 25 x^{2}\right)^{\frac{3}{2}}} + \frac{2 \left(\tan^{2}{\left(\frac{x}{3} \right)} + 1\right) \tan{\left(\frac{x}{3} \right)}}{9} - 8 \left(\cot^{2}{\left(2 x \right)} + 1\right) \cot{\left(2 x \right)}$$
The third derivative
[src]
2
/ 2/x\\ 2/x\ / 2/x\\
2 2*|1 + tan |-|| 2 4*tan |-|*|1 + tan |-||
/ 2 \ 125 \ \3// 2 / 2 \ 9375*x \3/ \ \3//
16*\1 + cot (2*x)/ + -------------- + ---------------- + 32*cot (2*x)*\1 + cot (2*x)/ + -------------- + -----------------------
3/2 27 5/2 27
/ 2\ / 2\
\1 - 25*x / \1 - 25*x /
$$\frac{9375 x^{2}}{\left(1 - 25 x^{2}\right)^{\frac{5}{2}}} + \frac{2 \left(\tan^{2}{\left(\frac{x}{3} \right)} + 1\right)^{2}}{27} + \frac{4 \left(\tan^{2}{\left(\frac{x}{3} \right)} + 1\right) \tan^{2}{\left(\frac{x}{3} \right)}}{27} + 16 \left(\cot^{2}{\left(2 x \right)} + 1\right)^{2} + 32 \left(\cot^{2}{\left(2 x \right)} + 1\right) \cot^{2}{\left(2 x \right)} + \frac{125}{\left(1 - 25 x^{2}\right)^{\frac{3}{2}}}$$