Mister Exam

Other calculators


y=tg^2(x^3+1)

Derivative of y=tg^2(x^3+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/ 3    \
tan \x  + 1/
tan2(x3+1)\tan^{2}{\left(x^{3} + 1 \right)}
d /   2/ 3    \\
--\tan \x  + 1//
dx              
ddxtan2(x3+1)\frac{d}{d x} \tan^{2}{\left(x^{3} + 1 \right)}
Detail solution
  1. Let u=tan(x3+1)u = \tan{\left(x^{3} + 1 \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddxtan(x3+1)\frac{d}{d x} \tan{\left(x^{3} + 1 \right)}:

    1. Rewrite the function to be differentiated:

      tan(x3+1)=sin(x3+1)cos(x3+1)\tan{\left(x^{3} + 1 \right)} = \frac{\sin{\left(x^{3} + 1 \right)}}{\cos{\left(x^{3} + 1 \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(x3+1)f{\left(x \right)} = \sin{\left(x^{3} + 1 \right)} and g(x)=cos(x3+1)g{\left(x \right)} = \cos{\left(x^{3} + 1 \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=x3+1u = x^{3} + 1.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(x3+1)\frac{d}{d x} \left(x^{3} + 1\right):

        1. Differentiate x3+1x^{3} + 1 term by term:

          1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

          2. The derivative of the constant 11 is zero.

          The result is: 3x23 x^{2}

        The result of the chain rule is:

        3x2cos(x3+1)3 x^{2} \cos{\left(x^{3} + 1 \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=x3+1u = x^{3} + 1.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(x3+1)\frac{d}{d x} \left(x^{3} + 1\right):

        1. Differentiate x3+1x^{3} + 1 term by term:

          1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

          2. The derivative of the constant 11 is zero.

          The result is: 3x23 x^{2}

        The result of the chain rule is:

        3x2sin(x3+1)- 3 x^{2} \sin{\left(x^{3} + 1 \right)}

      Now plug in to the quotient rule:

      3x2sin2(x3+1)+3x2cos2(x3+1)cos2(x3+1)\frac{3 x^{2} \sin^{2}{\left(x^{3} + 1 \right)} + 3 x^{2} \cos^{2}{\left(x^{3} + 1 \right)}}{\cos^{2}{\left(x^{3} + 1 \right)}}

    The result of the chain rule is:

    2(3x2sin2(x3+1)+3x2cos2(x3+1))tan(x3+1)cos2(x3+1)\frac{2 \cdot \left(3 x^{2} \sin^{2}{\left(x^{3} + 1 \right)} + 3 x^{2} \cos^{2}{\left(x^{3} + 1 \right)}\right) \tan{\left(x^{3} + 1 \right)}}{\cos^{2}{\left(x^{3} + 1 \right)}}

  4. Now simplify:

    6x2tan(x3+1)cos2(x3+1)\frac{6 x^{2} \tan{\left(x^{3} + 1 \right)}}{\cos^{2}{\left(x^{3} + 1 \right)}}


The answer is:

6x2tan(x3+1)cos2(x3+1)\frac{6 x^{2} \tan{\left(x^{3} + 1 \right)}}{\cos^{2}{\left(x^{3} + 1 \right)}}

The graph
02468-8-6-4-2-1010-10000001000000
The first derivative [src]
   2 /       2/ 3    \\    / 3    \
6*x *\1 + tan \x  + 1//*tan\x  + 1/
6x2(tan2(x3+1)+1)tan(x3+1)6 x^{2} \left(\tan^{2}{\left(x^{3} + 1 \right)} + 1\right) \tan{\left(x^{3} + 1 \right)}
The second derivative [src]
    /       2/     3\\ /     /     3\      3 /       2/     3\\      3    2/     3\\
6*x*\1 + tan \1 + x //*\2*tan\1 + x / + 3*x *\1 + tan \1 + x // + 6*x *tan \1 + x //
6x(tan2(x3+1)+1)(3x3(tan2(x3+1)+1)+6x3tan2(x3+1)+2tan(x3+1))6 x \left(\tan^{2}{\left(x^{3} + 1 \right)} + 1\right) \left(3 x^{3} \left(\tan^{2}{\left(x^{3} + 1 \right)} + 1\right) + 6 x^{3} \tan^{2}{\left(x^{3} + 1 \right)} + 2 \tan{\left(x^{3} + 1 \right)}\right)
The third derivative [src]
   /       2/     3\\ /   3 /       2/     3\\       3    2/     3\       6    3/     3\       6 /       2/     3\\    /     3\      /     3\\
12*\1 + tan \1 + x //*\9*x *\1 + tan \1 + x // + 18*x *tan \1 + x / + 18*x *tan \1 + x / + 36*x *\1 + tan \1 + x //*tan\1 + x / + tan\1 + x //
12(tan2(x3+1)+1)(36x6(tan2(x3+1)+1)tan(x3+1)+18x6tan3(x3+1)+9x3(tan2(x3+1)+1)+18x3tan2(x3+1)+tan(x3+1))12 \left(\tan^{2}{\left(x^{3} + 1 \right)} + 1\right) \left(36 x^{6} \left(\tan^{2}{\left(x^{3} + 1 \right)} + 1\right) \tan{\left(x^{3} + 1 \right)} + 18 x^{6} \tan^{3}{\left(x^{3} + 1 \right)} + 9 x^{3} \left(\tan^{2}{\left(x^{3} + 1 \right)} + 1\right) + 18 x^{3} \tan^{2}{\left(x^{3} + 1 \right)} + \tan{\left(x^{3} + 1 \right)}\right)
The graph
Derivative of y=tg^2(x^3+1)