Mister Exam

Other calculators


y=tg^2(x^3+1)

Derivative of y=tg^2(x^3+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/ 3    \
tan \x  + 1/
$$\tan^{2}{\left(x^{3} + 1 \right)}$$
d /   2/ 3    \\
--\tan \x  + 1//
dx              
$$\frac{d}{d x} \tan^{2}{\left(x^{3} + 1 \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Apply the power rule: goes to

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Apply the power rule: goes to

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
   2 /       2/ 3    \\    / 3    \
6*x *\1 + tan \x  + 1//*tan\x  + 1/
$$6 x^{2} \left(\tan^{2}{\left(x^{3} + 1 \right)} + 1\right) \tan{\left(x^{3} + 1 \right)}$$
The second derivative [src]
    /       2/     3\\ /     /     3\      3 /       2/     3\\      3    2/     3\\
6*x*\1 + tan \1 + x //*\2*tan\1 + x / + 3*x *\1 + tan \1 + x // + 6*x *tan \1 + x //
$$6 x \left(\tan^{2}{\left(x^{3} + 1 \right)} + 1\right) \left(3 x^{3} \left(\tan^{2}{\left(x^{3} + 1 \right)} + 1\right) + 6 x^{3} \tan^{2}{\left(x^{3} + 1 \right)} + 2 \tan{\left(x^{3} + 1 \right)}\right)$$
The third derivative [src]
   /       2/     3\\ /   3 /       2/     3\\       3    2/     3\       6    3/     3\       6 /       2/     3\\    /     3\      /     3\\
12*\1 + tan \1 + x //*\9*x *\1 + tan \1 + x // + 18*x *tan \1 + x / + 18*x *tan \1 + x / + 36*x *\1 + tan \1 + x //*tan\1 + x / + tan\1 + x //
$$12 \left(\tan^{2}{\left(x^{3} + 1 \right)} + 1\right) \left(36 x^{6} \left(\tan^{2}{\left(x^{3} + 1 \right)} + 1\right) \tan{\left(x^{3} + 1 \right)} + 18 x^{6} \tan^{3}{\left(x^{3} + 1 \right)} + 9 x^{3} \left(\tan^{2}{\left(x^{3} + 1 \right)} + 1\right) + 18 x^{3} \tan^{2}{\left(x^{3} + 1 \right)} + \tan{\left(x^{3} + 1 \right)}\right)$$
The graph
Derivative of y=tg^2(x^3+1)