2/ 3 \ tan \x + 1/
d / 2/ 3 \\ --\tan \x + 1// dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
2 / 2/ 3 \\ / 3 \ 6*x *\1 + tan \x + 1//*tan\x + 1/
/ 2/ 3\\ / / 3\ 3 / 2/ 3\\ 3 2/ 3\\ 6*x*\1 + tan \1 + x //*\2*tan\1 + x / + 3*x *\1 + tan \1 + x // + 6*x *tan \1 + x //
/ 2/ 3\\ / 3 / 2/ 3\\ 3 2/ 3\ 6 3/ 3\ 6 / 2/ 3\\ / 3\ / 3\\ 12*\1 + tan \1 + x //*\9*x *\1 + tan \1 + x // + 18*x *tan \1 + x / + 18*x *tan \1 + x / + 36*x *\1 + tan \1 + x //*tan\1 + x / + tan\1 + x //