Mister Exam

Other calculators


y=tg^5(3x^4-13)

Derivative of y=tg^5(3x^4-13)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   5/   4     \
tan \3*x  - 13/
$$\tan^{5}{\left(3 x^{4} - 13 \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    3    4/   4     \ /       2/   4     \\
60*x *tan \3*x  - 13/*\1 + tan \3*x  - 13//
$$60 x^{3} \left(\tan^{2}{\left(3 x^{4} - 13 \right)} + 1\right) \tan^{4}{\left(3 x^{4} - 13 \right)}$$
The second derivative [src]
     2    3/         4\ /       2/         4\\ /   4    2/         4\       4 /       2/         4\\      /         4\\
180*x *tan \-13 + 3*x /*\1 + tan \-13 + 3*x //*\8*x *tan \-13 + 3*x / + 16*x *\1 + tan \-13 + 3*x // + tan\-13 + 3*x //
$$180 x^{2} \left(\tan^{2}{\left(3 x^{4} - 13 \right)} + 1\right) \left(16 x^{4} \left(\tan^{2}{\left(3 x^{4} - 13 \right)} + 1\right) + 8 x^{4} \tan^{2}{\left(3 x^{4} - 13 \right)} + \tan{\left(3 x^{4} - 13 \right)}\right) \tan^{3}{\left(3 x^{4} - 13 \right)}$$
The third derivative [src]
                                              /                                                                                                  2                                                                                                \
         2/         4\ /       2/         4\\ |   2/         4\       4    3/         4\       8    4/         4\        8 /       2/         4\\        4 /       2/         4\\    /         4\        8    2/         4\ /       2/         4\\|
360*x*tan \-13 + 3*x /*\1 + tan \-13 + 3*x //*\tan \-13 + 3*x / + 36*x *tan \-13 + 3*x / + 96*x *tan \-13 + 3*x / + 288*x *\1 + tan \-13 + 3*x //  + 72*x *\1 + tan \-13 + 3*x //*tan\-13 + 3*x / + 624*x *tan \-13 + 3*x /*\1 + tan \-13 + 3*x ///
$$360 x \left(\tan^{2}{\left(3 x^{4} - 13 \right)} + 1\right) \left(288 x^{8} \left(\tan^{2}{\left(3 x^{4} - 13 \right)} + 1\right)^{2} + 624 x^{8} \left(\tan^{2}{\left(3 x^{4} - 13 \right)} + 1\right) \tan^{2}{\left(3 x^{4} - 13 \right)} + 96 x^{8} \tan^{4}{\left(3 x^{4} - 13 \right)} + 72 x^{4} \left(\tan^{2}{\left(3 x^{4} - 13 \right)} + 1\right) \tan{\left(3 x^{4} - 13 \right)} + 36 x^{4} \tan^{3}{\left(3 x^{4} - 13 \right)} + \tan^{2}{\left(3 x^{4} - 13 \right)}\right) \tan^{2}{\left(3 x^{4} - 13 \right)}$$
The graph
Derivative of y=tg^5(3x^4-13)