Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
3 4/ 4 \ / 2/ 4 \\ 60*x *tan \3*x - 13/*\1 + tan \3*x - 13//
2 3/ 4\ / 2/ 4\\ / 4 2/ 4\ 4 / 2/ 4\\ / 4\\ 180*x *tan \-13 + 3*x /*\1 + tan \-13 + 3*x //*\8*x *tan \-13 + 3*x / + 16*x *\1 + tan \-13 + 3*x // + tan\-13 + 3*x //
/ 2 \ 2/ 4\ / 2/ 4\\ | 2/ 4\ 4 3/ 4\ 8 4/ 4\ 8 / 2/ 4\\ 4 / 2/ 4\\ / 4\ 8 2/ 4\ / 2/ 4\\| 360*x*tan \-13 + 3*x /*\1 + tan \-13 + 3*x //*\tan \-13 + 3*x / + 36*x *tan \-13 + 3*x / + 96*x *tan \-13 + 3*x / + 288*x *\1 + tan \-13 + 3*x // + 72*x *\1 + tan \-13 + 3*x //*tan\-13 + 3*x / + 624*x *tan \-13 + 3*x /*\1 + tan \-13 + 3*x ///