Mister Exam

Other calculators


y=tg^2x+ln(sinx)

Derivative of y=tg^2x+ln(sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2                 
tan (x) + log(sin(x))
$$\tan^{2}{\left(x \right)} + \log{\left(\sin{\left(x \right)} \right)}$$
d /   2                 \
--\tan (x) + log(sin(x))/
dx                       
$$\frac{d}{d x} \left(\tan^{2}{\left(x \right)} + \log{\left(\sin{\left(x \right)} \right)}\right)$$
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    4. Let .

    5. The derivative of is .

    6. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
cos(x)   /         2   \       
------ + \2 + 2*tan (x)/*tan(x)
sin(x)                         
$$\left(2 \tan^{2}{\left(x \right)} + 2\right) \tan{\left(x \right)} + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The second derivative [src]
                    2      2                             
       /       2   \    cos (x)        2    /       2   \
-1 + 2*\1 + tan (x)/  - ------- + 4*tan (x)*\1 + tan (x)/
                           2                             
                        sin (x)                          
$$4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} - 1 - \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$
The third derivative [src]
  /   3                                                        2       \
  |cos (x)   cos(x)        3    /       2   \     /       2   \        |
2*|------- + ------ + 4*tan (x)*\1 + tan (x)/ + 8*\1 + tan (x)/ *tan(x)|
  |   3      sin(x)                                                    |
  \sin (x)                                                             /
$$2 \cdot \left(4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{3}{\left(x \right)} + 8 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \tan{\left(x \right)} + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{\cos^{3}{\left(x \right)}}{\sin^{3}{\left(x \right)}}\right)$$
3-th derivative [src]
  /   3                                                        2       \
  |cos (x)   cos(x)        3    /       2   \     /       2   \        |
2*|------- + ------ + 4*tan (x)*\1 + tan (x)/ + 8*\1 + tan (x)/ *tan(x)|
  |   3      sin(x)                                                    |
  \sin (x)                                                             /
$$2 \cdot \left(4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{3}{\left(x \right)} + 8 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \tan{\left(x \right)} + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{\cos^{3}{\left(x \right)}}{\sin^{3}{\left(x \right)}}\right)$$
The graph
Derivative of y=tg^2x+ln(sinx)