Mister Exam

Derivative of y=tg(8x²+3x+4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2          \
tan\8*x  + 3*x + 4/
tan((8x2+3x)+4)\tan{\left(\left(8 x^{2} + 3 x\right) + 4 \right)}
tan(8*x^2 + 3*x + 4)
Detail solution
  1. Rewrite the function to be differentiated:

    tan((8x2+3x)+4)=sin((8x2+3x)+4)cos((8x2+3x)+4)\tan{\left(\left(8 x^{2} + 3 x\right) + 4 \right)} = \frac{\sin{\left(\left(8 x^{2} + 3 x\right) + 4 \right)}}{\cos{\left(\left(8 x^{2} + 3 x\right) + 4 \right)}}

  2. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=sin((8x2+3x)+4)f{\left(x \right)} = \sin{\left(\left(8 x^{2} + 3 x\right) + 4 \right)} and g(x)=cos((8x2+3x)+4)g{\left(x \right)} = \cos{\left(\left(8 x^{2} + 3 x\right) + 4 \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=(8x2+3x)+4u = \left(8 x^{2} + 3 x\right) + 4.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx((8x2+3x)+4)\frac{d}{d x} \left(\left(8 x^{2} + 3 x\right) + 4\right):

      1. Differentiate (8x2+3x)+4\left(8 x^{2} + 3 x\right) + 4 term by term:

        1. Differentiate 8x2+3x8 x^{2} + 3 x term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: x2x^{2} goes to 2x2 x

            So, the result is: 16x16 x

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 33

          The result is: 16x+316 x + 3

        2. The derivative of the constant 44 is zero.

        The result is: 16x+316 x + 3

      The result of the chain rule is:

      (16x+3)cos((8x2+3x)+4)\left(16 x + 3\right) \cos{\left(\left(8 x^{2} + 3 x\right) + 4 \right)}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=(8x2+3x)+4u = \left(8 x^{2} + 3 x\right) + 4.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx((8x2+3x)+4)\frac{d}{d x} \left(\left(8 x^{2} + 3 x\right) + 4\right):

      1. Differentiate (8x2+3x)+4\left(8 x^{2} + 3 x\right) + 4 term by term:

        1. Differentiate 8x2+3x8 x^{2} + 3 x term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: x2x^{2} goes to 2x2 x

            So, the result is: 16x16 x

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 33

          The result is: 16x+316 x + 3

        2. The derivative of the constant 44 is zero.

        The result is: 16x+316 x + 3

      The result of the chain rule is:

      (16x+3)sin((8x2+3x)+4)- \left(16 x + 3\right) \sin{\left(\left(8 x^{2} + 3 x\right) + 4 \right)}

    Now plug in to the quotient rule:

    (16x+3)sin2((8x2+3x)+4)+(16x+3)cos2((8x2+3x)+4)cos2((8x2+3x)+4)\frac{\left(16 x + 3\right) \sin^{2}{\left(\left(8 x^{2} + 3 x\right) + 4 \right)} + \left(16 x + 3\right) \cos^{2}{\left(\left(8 x^{2} + 3 x\right) + 4 \right)}}{\cos^{2}{\left(\left(8 x^{2} + 3 x\right) + 4 \right)}}

  3. Now simplify:

    16x+3cos2(8x2+3x+4)\frac{16 x + 3}{\cos^{2}{\left(8 x^{2} + 3 x + 4 \right)}}


The answer is:

16x+3cos2(8x2+3x+4)\frac{16 x + 3}{\cos^{2}{\left(8 x^{2} + 3 x + 4 \right)}}

The graph
02468-8-6-4-2-1010-200000200000
The first derivative [src]
/       2/   2          \\           
\1 + tan \8*x  + 3*x + 4//*(3 + 16*x)
(16x+3)(tan2((8x2+3x)+4)+1)\left(16 x + 3\right) \left(\tan^{2}{\left(\left(8 x^{2} + 3 x\right) + 4 \right)} + 1\right)
The second derivative [src]
  /         2/             2\             2 /       2/             2\\    /             2\\
2*\8 + 8*tan \4 + 3*x + 8*x / + (3 + 16*x) *\1 + tan \4 + 3*x + 8*x //*tan\4 + 3*x + 8*x //
2((16x+3)2(tan2(8x2+3x+4)+1)tan(8x2+3x+4)+8tan2(8x2+3x+4)+8)2 \left(\left(16 x + 3\right)^{2} \left(\tan^{2}{\left(8 x^{2} + 3 x + 4 \right)} + 1\right) \tan{\left(8 x^{2} + 3 x + 4 \right)} + 8 \tan^{2}{\left(8 x^{2} + 3 x + 4 \right)} + 8\right)
The third derivative [src]
  /       2/             2\\            /      /             2\             2 /       2/             2\\               2    2/             2\\
2*\1 + tan \4 + 3*x + 8*x //*(3 + 16*x)*\48*tan\4 + 3*x + 8*x / + (3 + 16*x) *\1 + tan \4 + 3*x + 8*x // + 2*(3 + 16*x) *tan \4 + 3*x + 8*x //
2(16x+3)(tan2(8x2+3x+4)+1)((16x+3)2(tan2(8x2+3x+4)+1)+2(16x+3)2tan2(8x2+3x+4)+48tan(8x2+3x+4))2 \left(16 x + 3\right) \left(\tan^{2}{\left(8 x^{2} + 3 x + 4 \right)} + 1\right) \left(\left(16 x + 3\right)^{2} \left(\tan^{2}{\left(8 x^{2} + 3 x + 4 \right)} + 1\right) + 2 \left(16 x + 3\right)^{2} \tan^{2}{\left(8 x^{2} + 3 x + 4 \right)} + 48 \tan{\left(8 x^{2} + 3 x + 4 \right)}\right)
The graph
Derivative of y=tg(8x²+3x+4)