Mister Exam

Derivative of y=tg√2x/x+1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /  _____\    
tan\\/ 2*x /    
------------ + 1
     x          
$$1 + \frac{\tan{\left(\sqrt{2 x} \right)}}{x}$$
  /   /  _____\    \
d |tan\\/ 2*x /    |
--|------------ + 1|
dx\     x          /
$$\frac{d}{d x} \left(1 + \frac{\tan{\left(\sqrt{2 x} \right)}}{x}\right)$$
Detail solution
  1. Differentiate term by term:

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. Let .

          2. Apply the power rule: goes to

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. Let .

          2. Apply the power rule: goes to

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      To find :

      1. Apply the power rule: goes to

      Now plug in to the quotient rule:

    2. The derivative of the constant is zero.

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     /  _____\     ___ /       2/  _____\\
  tan\\/ 2*x /   \/ 2 *\1 + tan \\/ 2*x //
- ------------ + -------------------------
        2                     3/2         
       x                   2*x            
$$- \frac{\tan{\left(\sqrt{2 x} \right)}}{x^{2}} + \frac{\sqrt{2} \left(\tan^{2}{\left(\sqrt{2 x} \right)} + 1\right)}{2 x^{\frac{3}{2}}}$$
The second derivative [src]
     /  _____\   /       2/  _____\\    /  _____\       ___ /       2/  _____\\
2*tan\\/ 2*x /   \1 + tan \\/ 2*x //*tan\\/ 2*x /   5*\/ 2 *\1 + tan \\/ 2*x //
-------------- + -------------------------------- - ---------------------------
       3                         2                                5/2          
      x                         x                              4*x             
$$\frac{\left(\tan^{2}{\left(\sqrt{2 x} \right)} + 1\right) \tan{\left(\sqrt{2 x} \right)}}{x^{2}} + \frac{2 \tan{\left(\sqrt{2 x} \right)}}{x^{3}} - \frac{5 \sqrt{2} \left(\tan^{2}{\left(\sqrt{2 x} \right)} + 1\right)}{4 x^{\frac{5}{2}}}$$
3-я производная [src]
                                            2                                                                                                              
       /  _____\     ___ /       2/  _____\\      /       2/  _____\\    /  _____\        ___ /       2/  _____\\     ___    2/  _____\ /       2/  _____\\
  6*tan\\/ 2*x /   \/ 2 *\1 + tan \\/ 2*x //    9*\1 + tan \\/ 2*x //*tan\\/ 2*x /   33*\/ 2 *\1 + tan \\/ 2*x //   \/ 2 *tan \\/ 2*x /*\1 + tan \\/ 2*x //
- -------------- + -------------------------- - ---------------------------------- + ---------------------------- + ---------------------------------------
         4                      5/2                               3                                7/2                                 5/2                 
        x                    2*x                               2*x                              8*x                                   x                    
$$- \frac{9 \left(\tan^{2}{\left(\sqrt{2 x} \right)} + 1\right) \tan{\left(\sqrt{2 x} \right)}}{2 x^{3}} - \frac{6 \tan{\left(\sqrt{2 x} \right)}}{x^{4}} + \frac{\sqrt{2} \left(\tan^{2}{\left(\sqrt{2 x} \right)} + 1\right)^{2}}{2 x^{\frac{5}{2}}} + \frac{\sqrt{2} \left(\tan^{2}{\left(\sqrt{2 x} \right)} + 1\right) \tan^{2}{\left(\sqrt{2 x} \right)}}{x^{\frac{5}{2}}} + \frac{33 \sqrt{2} \left(\tan^{2}{\left(\sqrt{2 x} \right)} + 1\right)}{8 x^{\frac{7}{2}}}$$
The third derivative [src]
                                            2                                                                                                              
       /  _____\     ___ /       2/  _____\\      /       2/  _____\\    /  _____\        ___ /       2/  _____\\     ___    2/  _____\ /       2/  _____\\
  6*tan\\/ 2*x /   \/ 2 *\1 + tan \\/ 2*x //    9*\1 + tan \\/ 2*x //*tan\\/ 2*x /   33*\/ 2 *\1 + tan \\/ 2*x //   \/ 2 *tan \\/ 2*x /*\1 + tan \\/ 2*x //
- -------------- + -------------------------- - ---------------------------------- + ---------------------------- + ---------------------------------------
         4                      5/2                               3                                7/2                                 5/2                 
        x                    2*x                               2*x                              8*x                                   x                    
$$- \frac{9 \left(\tan^{2}{\left(\sqrt{2 x} \right)} + 1\right) \tan{\left(\sqrt{2 x} \right)}}{2 x^{3}} - \frac{6 \tan{\left(\sqrt{2 x} \right)}}{x^{4}} + \frac{\sqrt{2} \left(\tan^{2}{\left(\sqrt{2 x} \right)} + 1\right)^{2}}{2 x^{\frac{5}{2}}} + \frac{\sqrt{2} \left(\tan^{2}{\left(\sqrt{2 x} \right)} + 1\right) \tan^{2}{\left(\sqrt{2 x} \right)}}{x^{\frac{5}{2}}} + \frac{33 \sqrt{2} \left(\tan^{2}{\left(\sqrt{2 x} \right)} + 1\right)}{8 x^{\frac{7}{2}}}$$
The graph
Derivative of y=tg√2x/x+1