Mister Exam

Other calculators


y=sqrt(x)^((sin^2)x)

Derivative of y=sqrt(x)^((sin^2)x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        2     
     sin (x)*x
  ___         
\/ x          
$$\left(\sqrt{x}\right)^{x \sin^{2}{\left(x \right)}}$$
(sqrt(x))^(sin(x)^2*x)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      2                                                        
 x*sin (x)                                                     
 --------- /   2                                              \
     2     |sin (x)   /   2                       \    /  ___\|
x         *|------- + \sin (x) + 2*x*cos(x)*sin(x)/*log\\/ x /|
           \   2                                              /
$$x^{\frac{x \sin^{2}{\left(x \right)}}{2}} \left(\left(2 x \sin{\left(x \right)} \cos{\left(x \right)} + \sin^{2}{\left(x \right)}\right) \log{\left(\sqrt{x} \right)} + \frac{\sin^{2}{\left(x \right)}}{2}\right)$$
The second derivative [src]
      2                                                                                                                                                                                                           
 x*sin (x)                                                                                                                                                                                                        
 --------- /                                                                                                           2                                            /                           /  ___\         \\
     2     |                  /     2           2                     \    /  ___\   (2*x*cos(x) + sin(x))*sin(x)   sin (x)*((2*x*cos(x) + sin(x))*log(x) + sin(x))*\2*(2*x*cos(x) + sin(x))*log\\/ x / + sin(x)/|
x         *|cos(x)*sin(x) + 2*\x*cos (x) - x*sin (x) + 2*cos(x)*sin(x)/*log\\/ x / + ---------------------------- + ---------------------------------------------------------------------------------------------|
           \                                                                                     2*x                                                              4                                              /
$$x^{\frac{x \sin^{2}{\left(x \right)}}{2}} \left(\frac{\left(2 \left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \log{\left(\sqrt{x} \right)} + \sin{\left(x \right)}\right) \left(\left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \log{\left(x \right)} + \sin{\left(x \right)}\right) \sin^{2}{\left(x \right)}}{4} + 2 \left(- x \sin^{2}{\left(x \right)} + x \cos^{2}{\left(x \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)}\right) \log{\left(\sqrt{x} \right)} + \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}}{2 x}\right)$$
The third derivative [src]
      2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
 x*sin (x) /                                                                                                                                                                       /                    /     2           2                     \    /  ___\   (2*x*cos(x) + sin(x))*sin(x)\                                         /                           /  ___\         \ /  /     2           2                     \                            (2*x*cos(x) + sin(x))*sin(x)\                                                                                                        \
 --------- |                                                                                   /     2           2                     \   ((2*x*cos(x) + sin(x))*log(x) + sin(x))*|2*cos(x)*sin(x) + 4*\x*cos (x) - x*sin (x) + 2*cos(x)*sin(x)/*log\\/ x / + ----------------------------|*sin(x)                                  \2*(2*x*cos(x) + sin(x))*log\\/ x / + sin(x)/*|2*\x*cos (x) - x*sin (x) + 2*cos(x)*sin(x)/*log(x) + 2*cos(x)*sin(x) + ----------------------------|*sin(x)                                          2    3    /                           /  ___\         \|
     2     |   2         2        /       2           2                       \    /  ___\   2*\x*cos (x) - x*sin (x) + 2*cos(x)*sin(x)/                                           \                                                                                        x              /          (2*x*cos(x) + sin(x))*sin(x)                                                 \                                                                                    x              /          ((2*x*cos(x) + sin(x))*log(x) + sin(x)) *sin (x)*\2*(2*x*cos(x) + sin(x))*log\\/ x / + sin(x)/|
x         *|cos (x) - sin (x) - 2*\- 3*cos (x) + 3*sin (x) + 4*x*cos(x)*sin(x)/*log\\/ x / + ------------------------------------------- + -------------------------------------------------------------------------------------------------------------------------------------------------------- - ---------------------------- + ---------------------------------------------------------------------------------------------------------------------------------------------------------- + ----------------------------------------------------------------------------------------------|
           |                                                                                                      x                                                                                                   2                                                                                              2                                                                                           4                                                                                                                              8                                               |
           \                                                                                                                                                                                                                                                                                                      2*x                                                                                                                                                                                                                                                                           /
$$x^{\frac{x \sin^{2}{\left(x \right)}}{2}} \left(\frac{\left(2 \left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \log{\left(\sqrt{x} \right)} + \sin{\left(x \right)}\right) \left(\left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \log{\left(x \right)} + \sin{\left(x \right)}\right)^{2} \sin^{3}{\left(x \right)}}{8} + \frac{\left(2 \left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \log{\left(\sqrt{x} \right)} + \sin{\left(x \right)}\right) \left(2 \left(- x \sin^{2}{\left(x \right)} + x \cos^{2}{\left(x \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)}\right) \log{\left(x \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}}{x}\right) \sin{\left(x \right)}}{4} + \frac{\left(\left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \log{\left(x \right)} + \sin{\left(x \right)}\right) \left(4 \left(- x \sin^{2}{\left(x \right)} + x \cos^{2}{\left(x \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)}\right) \log{\left(\sqrt{x} \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}}{x}\right) \sin{\left(x \right)}}{2} - 2 \left(4 x \sin{\left(x \right)} \cos{\left(x \right)} + 3 \sin^{2}{\left(x \right)} - 3 \cos^{2}{\left(x \right)}\right) \log{\left(\sqrt{x} \right)} - \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)} + \frac{2 \left(- x \sin^{2}{\left(x \right)} + x \cos^{2}{\left(x \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)}\right)}{x} - \frac{\left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}}{2 x^{2}}\right)$$
The graph
Derivative of y=sqrt(x)^((sin^2)x)