Mister Exam

Other calculators


y=sqrt(x+2*(sqrt(x)))

Derivative of y=sqrt(x+2*(sqrt(x)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _____________
  /         ___ 
\/  x + 2*\/ x  
$$\sqrt{2 \sqrt{x} + x}$$
sqrt(x + 2*sqrt(x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  1      1      
  - + -------   
  2       ___   
      2*\/ x    
----------------
   _____________
  /         ___ 
\/  x + 2*\/ x  
$$\frac{\frac{1}{2} + \frac{1}{2 \sqrt{x}}}{\sqrt{2 \sqrt{x} + x}}$$
The second derivative [src]
 /                  2\ 
 |       /      1  \ | 
 |       |1 + -----| | 
 |       |      ___| | 
 | 1     \    \/ x / | 
-|---- + ------------| 
 | 3/2           ___ | 
 \x      x + 2*\/ x  / 
-----------------------
        _____________  
       /         ___   
   4*\/  x + 2*\/ x    
$$- \frac{\frac{\left(1 + \frac{1}{\sqrt{x}}\right)^{2}}{2 \sqrt{x} + x} + \frac{1}{x^{\frac{3}{2}}}}{4 \sqrt{2 \sqrt{x} + x}}$$
The third derivative [src]
  /                   3                      \
  |        /      1  \               1       |
  |        |1 + -----|         1 + -----     |
  |        |      ___|               ___     |
  | 1      \    \/ x /             \/ x      |
3*|---- + -------------- + ------------------|
  | 5/2                2    3/2 /        ___\|
  |x      /        ___\    x   *\x + 2*\/ x /|
  \       \x + 2*\/ x /                      /
----------------------------------------------
                   _____________              
                  /         ___               
              8*\/  x + 2*\/ x                
$$\frac{3 \left(\frac{\left(1 + \frac{1}{\sqrt{x}}\right)^{3}}{\left(2 \sqrt{x} + x\right)^{2}} + \frac{1 + \frac{1}{\sqrt{x}}}{x^{\frac{3}{2}} \left(2 \sqrt{x} + x\right)} + \frac{1}{x^{\frac{5}{2}}}\right)}{8 \sqrt{2 \sqrt{x} + x}}$$
The graph
Derivative of y=sqrt(x+2*(sqrt(x)))