Mister Exam

Other calculators


y=sqrt(x/2-sin(x/2))

Derivative of y=sqrt(x/2-sin(x/2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ____________
   / x      /x\ 
  /  - - sin|-| 
\/   2      \2/ 
$$\sqrt{\frac{x}{2} - \sin{\left(\frac{x}{2} \right)}}$$
sqrt(x/2 - sin(x/2))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
          /x\   
       cos|-|   
   1      \2/   
   - - ------   
   4     4      
----------------
    ____________
   / x      /x\ 
  /  - - sin|-| 
\/   2      \2/ 
$$\frac{\frac{1}{4} - \frac{\cos{\left(\frac{x}{2} \right)}}{4}}{\sqrt{\frac{x}{2} - \sin{\left(\frac{x}{2} \right)}}}$$
The second derivative [src]
                        2
           /        /x\\ 
           |-1 + cos|-|| 
     /x\   \        \2// 
2*sin|-| - --------------
     \2/     x      /x\  
             - - sin|-|  
             2      \2/  
-------------------------
          ____________   
         / x      /x\    
   16*  /  - - sin|-|    
      \/   2      \2/    
$$\frac{2 \sin{\left(\frac{x}{2} \right)} - \frac{\left(\cos{\left(\frac{x}{2} \right)} - 1\right)^{2}}{\frac{x}{2} - \sin{\left(\frac{x}{2} \right)}}}{16 \sqrt{\frac{x}{2} - \sin{\left(\frac{x}{2} \right)}}}$$
The third derivative [src]
                          3                         
             /        /x\\      /        /x\\    /x\
           3*|-1 + cos|-||    6*|-1 + cos|-||*sin|-|
     /x\     \        \2//      \        \2//    \2/
4*cos|-| - ---------------- + ----------------------
     \2/                2           x      /x\      
            /x      /x\\            - - sin|-|      
            |- - sin|-||            2      \2/      
            \2      \2//                            
----------------------------------------------------
                       ____________                 
                      / x      /x\                  
                64*  /  - - sin|-|                  
                   \/   2      \2/                  
$$\frac{4 \cos{\left(\frac{x}{2} \right)} + \frac{6 \left(\cos{\left(\frac{x}{2} \right)} - 1\right) \sin{\left(\frac{x}{2} \right)}}{\frac{x}{2} - \sin{\left(\frac{x}{2} \right)}} - \frac{3 \left(\cos{\left(\frac{x}{2} \right)} - 1\right)^{3}}{\left(\frac{x}{2} - \sin{\left(\frac{x}{2} \right)}\right)^{2}}}{64 \sqrt{\frac{x}{2} - \sin{\left(\frac{x}{2} \right)}}}$$
The graph
Derivative of y=sqrt(x/2-sin(x/2))