Mister Exam

Other calculators


y=sqrt(x)/(e^x+1)

Derivative of y=sqrt(x)/(e^x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___ 
\/ x  
------
 x    
e  + 1
$$\frac{\sqrt{x}}{e^{x} + 1}$$
  /  ___ \
d |\/ x  |
--|------|
dx| x    |
  \e  + 1/
$$\frac{d}{d x} \frac{\sqrt{x}}{e^{x} + 1}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of is itself.

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                      ___  x
       1            \/ x *e 
---------------- - ---------
    ___ / x    \           2
2*\/ x *\e  + 1/   / x    \ 
                   \e  + 1/ 
$$- \frac{\sqrt{x} e^{x}}{\left(e^{x} + 1\right)^{2}} + \frac{1}{2 \sqrt{x} \left(e^{x} + 1\right)}$$
The second derivative [src]
 /                                /        x \   \ 
 |                            ___ |     2*e  |  x| 
 |                          \/ x *|1 - ------|*e | 
 |                x               |         x|   | 
 |  1            e                \    1 + e /   | 
-|------ + -------------- + ---------------------| 
 |   3/2     ___ /     x\                x       | 
 \4*x      \/ x *\1 + e /           1 + e        / 
---------------------------------------------------
                            x                      
                       1 + e                       
$$- \frac{\frac{\sqrt{x} \left(1 - \frac{2 e^{x}}{e^{x} + 1}\right) e^{x}}{e^{x} + 1} + \frac{e^{x}}{\sqrt{x} \left(e^{x} + 1\right)} + \frac{1}{4 x^{\frac{3}{2}}}}{e^{x} + 1}$$
The third derivative [src]
                                 /        x         2*x \                       
                             ___ |     6*e       6*e    |  x     /        x \   
                           \/ x *|1 - ------ + ---------|*e      |     2*e  |  x
                                 |         x           2|      3*|1 - ------|*e 
                  x              |    1 + e    /     x\ |        |         x|   
  3            3*e               \             \1 + e / /        \    1 + e /   
------ + --------------- - --------------------------------- - -----------------
   5/2      3/2 /     x\                      x                     ___ /     x\
8*x      4*x   *\1 + e /                 1 + e                  2*\/ x *\1 + e /
--------------------------------------------------------------------------------
                                          x                                     
                                     1 + e                                      
$$\frac{- \frac{\sqrt{x} \left(1 - \frac{6 e^{x}}{e^{x} + 1} + \frac{6 e^{2 x}}{\left(e^{x} + 1\right)^{2}}\right) e^{x}}{e^{x} + 1} - \frac{3 \cdot \left(1 - \frac{2 e^{x}}{e^{x} + 1}\right) e^{x}}{2 \sqrt{x} \left(e^{x} + 1\right)} + \frac{3 e^{x}}{4 x^{\frac{3}{2}} \left(e^{x} + 1\right)} + \frac{3}{8 x^{\frac{5}{2}}}}{e^{x} + 1}$$
The graph
Derivative of y=sqrt(x)/(e^x+1)