Mister Exam

Other calculators


y=sqrt(1-x-x^2)+arcsin(2x+1)/sqrt(5)

Derivative of y=sqrt(1-x-x^2)+arcsin(2x+1)/sqrt(5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ____________                
  /          2    asin(2*x + 1)
\/  1 - x - x   + -------------
                        ___    
                      \/ 5     
$$\sqrt{- x^{2} + \left(1 - x\right)} + \frac{\operatorname{asin}{\left(2 x + 1 \right)}}{\sqrt{5}}$$
sqrt(1 - x - x^2) + asin(2*x + 1)/sqrt(5)
The graph
The first derivative [src]
                            ___      
                          \/ 5       
                        2*-----      
    -1/2 - x                5        
--------------- + -------------------
   ____________      ________________
  /          2      /              2 
\/  1 - x - x     \/  1 - (2*x + 1)  
$$\frac{- x - \frac{1}{2}}{\sqrt{- x^{2} + \left(1 - x\right)}} + \frac{2 \frac{\sqrt{5}}{5}}{\sqrt{1 - \left(2 x + 1\right)^{2}}}$$
The second derivative [src]
                                 2            ___            
         1              (1 + 2*x)         4*\/ 5 *(1 + 2*x)  
- --------------- - ----------------- + ---------------------
     ____________                 3/2                     3/2
    /          2      /         2\        /             2\   
  \/  1 - x - x     4*\1 - x - x /      5*\1 - (1 + 2*x) /   
$$- \frac{\left(2 x + 1\right)^{2}}{4 \left(- x^{2} - x + 1\right)^{\frac{3}{2}}} - \frac{1}{\sqrt{- x^{2} - x + 1}} + \frac{4 \sqrt{5} \left(2 x + 1\right)}{5 \left(1 - \left(2 x + 1\right)^{2}\right)^{\frac{3}{2}}}$$
The third derivative [src]
                                 3               ___              ___          2
    60*(1 + 2*x)     15*(1 + 2*x)           64*\/ 5         192*\/ 5 *(1 + 2*x) 
- --------------- - --------------- + ------------------- + --------------------
              3/2               5/2                   3/2                   5/2 
  /         2\      /         2\      /             2\      /             2\    
  \1 - x - x /      \1 - x - x /      \1 - (1 + 2*x) /      \1 - (1 + 2*x) /    
--------------------------------------------------------------------------------
                                       40                                       
$$\frac{- \frac{15 \left(2 x + 1\right)^{3}}{\left(- x^{2} - x + 1\right)^{\frac{5}{2}}} - \frac{60 \left(2 x + 1\right)}{\left(- x^{2} - x + 1\right)^{\frac{3}{2}}} + \frac{64 \sqrt{5}}{\left(1 - \left(2 x + 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{192 \sqrt{5} \left(2 x + 1\right)^{2}}{\left(1 - \left(2 x + 1\right)^{2}\right)^{\frac{5}{2}}}}{40}$$
The graph
Derivative of y=sqrt(1-x-x^2)+arcsin(2x+1)/sqrt(5)