The second derivative
[src]
2 ___
1 (1 + 2*x) 4*\/ 5 *(1 + 2*x)
- --------------- - ----------------- + ---------------------
____________ 3/2 3/2
/ 2 / 2\ / 2\
\/ 1 - x - x 4*\1 - x - x / 5*\1 - (1 + 2*x) /
$$- \frac{\left(2 x + 1\right)^{2}}{4 \left(- x^{2} - x + 1\right)^{\frac{3}{2}}} - \frac{1}{\sqrt{- x^{2} - x + 1}} + \frac{4 \sqrt{5} \left(2 x + 1\right)}{5 \left(1 - \left(2 x + 1\right)^{2}\right)^{\frac{3}{2}}}$$
The third derivative
[src]
3 ___ ___ 2
60*(1 + 2*x) 15*(1 + 2*x) 64*\/ 5 192*\/ 5 *(1 + 2*x)
- --------------- - --------------- + ------------------- + --------------------
3/2 5/2 3/2 5/2
/ 2\ / 2\ / 2\ / 2\
\1 - x - x / \1 - x - x / \1 - (1 + 2*x) / \1 - (1 + 2*x) /
--------------------------------------------------------------------------------
40
$$\frac{- \frac{15 \left(2 x + 1\right)^{3}}{\left(- x^{2} - x + 1\right)^{\frac{5}{2}}} - \frac{60 \left(2 x + 1\right)}{\left(- x^{2} - x + 1\right)^{\frac{3}{2}}} + \frac{64 \sqrt{5}}{\left(1 - \left(2 x + 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{192 \sqrt{5} \left(2 x + 1\right)^{2}}{\left(1 - \left(2 x + 1\right)^{2}\right)^{\frac{5}{2}}}}{40}$$