_______________ \/ log(sin(3*x))
d / _______________\ --\\/ log(sin(3*x)) / dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
3*cos(3*x)
----------------------------
_______________
2*\/ log(sin(3*x)) *sin(3*x)
/ 2 2 \
| 2*cos (3*x) cos (3*x) |
-9*|2 + ----------- + -----------------------|
| 2 2 |
\ sin (3*x) log(sin(3*x))*sin (3*x)/
----------------------------------------------
_______________
4*\/ log(sin(3*x))
/ 2 2 2 \
| 3 cos (3*x) 3*cos (3*x) 3*cos (3*x) |
27*|1 + --------------- + --------- + ------------------------- + --------------------------|*cos(3*x)
| 4*log(sin(3*x)) 2 2 2 2 |
\ sin (3*x) 4*log(sin(3*x))*sin (3*x) 8*log (sin(3*x))*sin (3*x)/
------------------------------------------------------------------------------------------------------
_______________
\/ log(sin(3*x)) *sin(3*x)