Mister Exam

Other calculators


y=sin(x^2-3x+5)

Derivative of y=sin(x^2-3x+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2          \
sin\x  - 3*x + 5/
$$\sin{\left(x^{2} - 3 x + 5 \right)}$$
d /   / 2          \\
--\sin\x  - 3*x + 5//
dx                   
$$\frac{d}{d x} \sin{\left(x^{2} - 3 x + 5 \right)}$$
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        So, the result is:

      3. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
              / 2          \
(-3 + 2*x)*cos\x  - 3*x + 5/
$$\left(2 x - 3\right) \cos{\left(x^{2} - 3 x + 5 \right)}$$
The second derivative [src]
     /     2      \             2    /     2      \
2*cos\5 + x  - 3*x/ - (-3 + 2*x) *sin\5 + x  - 3*x/
$$- \left(2 x - 3\right)^{2} \sin{\left(x^{2} - 3 x + 5 \right)} + 2 \cos{\left(x^{2} - 3 x + 5 \right)}$$
The third derivative [src]
            /     /     2      \             2    /     2      \\
-(-3 + 2*x)*\6*sin\5 + x  - 3*x/ + (-3 + 2*x) *cos\5 + x  - 3*x//
$$- \left(2 x - 3\right) \left(\left(2 x - 3\right)^{2} \cos{\left(x^{2} - 3 x + 5 \right)} + 6 \sin{\left(x^{2} - 3 x + 5 \right)}\right)$$
The graph
Derivative of y=sin(x^2-3x+5)