Detail solution
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
Apply the power rule: goes to
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$5 x^{4} \cos{\left(x^{5} \right)}$$
The second derivative
[src]
3 / / 5\ 5 / 5\\
5*x *\4*cos\x / - 5*x *sin\x //
$$5 x^{3} \left(- 5 x^{5} \sin{\left(x^{5} \right)} + 4 \cos{\left(x^{5} \right)}\right)$$
The third derivative
[src]
2 / / 5\ 5 / 5\ 10 / 5\\
5*x *\12*cos\x / - 60*x *sin\x / - 25*x *cos\x //
$$5 x^{2} \left(- 25 x^{10} \cos{\left(x^{5} \right)} - 60 x^{5} \sin{\left(x^{5} \right)} + 12 \cos{\left(x^{5} \right)}\right)$$