Mister Exam

Derivative of y=sin(x^5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 5\
sin\x /
$$\sin{\left(x^{5} \right)}$$
sin(x^5)
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Apply the power rule: goes to

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
   4    / 5\
5*x *cos\x /
$$5 x^{4} \cos{\left(x^{5} \right)}$$
The second derivative [src]
   3 /     / 5\      5    / 5\\
5*x *\4*cos\x / - 5*x *sin\x //
$$5 x^{3} \left(- 5 x^{5} \sin{\left(x^{5} \right)} + 4 \cos{\left(x^{5} \right)}\right)$$
The third derivative [src]
   2 /      / 5\       5    / 5\       10    / 5\\
5*x *\12*cos\x / - 60*x *sin\x / - 25*x  *cos\x //
$$5 x^{2} \left(- 25 x^{10} \cos{\left(x^{5} \right)} - 60 x^{5} \sin{\left(x^{5} \right)} + 12 \cos{\left(x^{5} \right)}\right)$$
The graph
Derivative of y=sin(x^5)