Mister Exam

Derivative of y=(sinx-3x)(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
(sin(x) - 3*x)*(x + 1)
(3x+sin(x))(x+1)\left(- 3 x + \sin{\left(x \right)}\right) \left(x + 1\right)
(sin(x) - 3*x)*(x + 1)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=3x+sin(x)f{\left(x \right)} = - 3 x + \sin{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 3x+sin(x)- 3 x + \sin{\left(x \right)} term by term:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 3-3

      The result is: cos(x)3\cos{\left(x \right)} - 3

    g(x)=x+1g{\left(x \right)} = x + 1; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x+1x + 1 term by term:

      1. Apply the power rule: xx goes to 11

      2. The derivative of the constant 11 is zero.

      The result is: 11

    The result is: 3x+(x+1)(cos(x)3)+sin(x)- 3 x + \left(x + 1\right) \left(\cos{\left(x \right)} - 3\right) + \sin{\left(x \right)}

  2. Now simplify:

    3x+(x+1)(cos(x)3)+sin(x)- 3 x + \left(x + 1\right) \left(\cos{\left(x \right)} - 3\right) + \sin{\left(x \right)}


The answer is:

3x+(x+1)(cos(x)3)+sin(x)- 3 x + \left(x + 1\right) \left(\cos{\left(x \right)} - 3\right) + \sin{\left(x \right)}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
-3*x + (-3 + cos(x))*(x + 1) + sin(x)
3x+(x+1)(cos(x)3)+sin(x)- 3 x + \left(x + 1\right) \left(\cos{\left(x \right)} - 3\right) + \sin{\left(x \right)}
The second derivative [src]
-6 + 2*cos(x) - (1 + x)*sin(x)
(x+1)sin(x)+2cos(x)6- \left(x + 1\right) \sin{\left(x \right)} + 2 \cos{\left(x \right)} - 6
The third derivative [src]
-(3*sin(x) + (1 + x)*cos(x))
((x+1)cos(x)+3sin(x))- (\left(x + 1\right) \cos{\left(x \right)} + 3 \sin{\left(x \right)})
The graph
Derivative of y=(sinx-3x)(x+1)