Mister Exam

Other calculators


y=sinx/(6-2x)

Derivative of y=sinx/(6-2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(x)
-------
6 - 2*x
$$\frac{\sin{\left(x \right)}}{6 - 2 x}$$
sin(x)/(6 - 2*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 cos(x)    2*sin(x) 
------- + ----------
6 - 2*x            2
          (6 - 2*x) 
$$\frac{\cos{\left(x \right)}}{6 - 2 x} + \frac{2 \sin{\left(x \right)}}{\left(6 - 2 x\right)^{2}}$$
The second derivative [src]
sin(x)   cos(x)     sin(x) 
------ + ------ - ---------
  2      -3 + x           2
                  (-3 + x) 
---------------------------
           -3 + x          
$$\frac{\frac{\sin{\left(x \right)}}{2} + \frac{\cos{\left(x \right)}}{x - 3} - \frac{\sin{\left(x \right)}}{\left(x - 3\right)^{2}}}{x - 3}$$
The third derivative [src]
cos(x)    3*cos(x)    3*sin(x)    3*sin(x) 
------ - --------- + --------- - ----------
  2              2           3   2*(-3 + x)
         (-3 + x)    (-3 + x)              
-------------------------------------------
                   -3 + x                  
$$\frac{\frac{\cos{\left(x \right)}}{2} - \frac{3 \sin{\left(x \right)}}{2 \left(x - 3\right)} - \frac{3 \cos{\left(x \right)}}{\left(x - 3\right)^{2}} + \frac{3 \sin{\left(x \right)}}{\left(x - 3\right)^{3}}}{x - 3}$$
The graph
Derivative of y=sinx/(6-2x)