Detail solution
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
Now plug in to the quotient rule:
-
Now simplify:
The answer is:
The first derivative
[src]
-x -x
8 *cos(x) - 8 *log(8)*sin(x)
$$- 8^{- x} \log{\left(8 \right)} \sin{\left(x \right)} + 8^{- x} \cos{\left(x \right)}$$
The second derivative
[src]
-x / 2 \
8 *\-sin(x) + log (8)*sin(x) - 2*cos(x)*log(8)/
$$8^{- x} \left(- \sin{\left(x \right)} + \log{\left(8 \right)}^{2} \sin{\left(x \right)} - 2 \log{\left(8 \right)} \cos{\left(x \right)}\right)$$
The third derivative
[src]
-x / 3 2 \
8 *\-cos(x) - log (8)*sin(x) + 3*log (8)*cos(x) + 3*log(8)*sin(x)/
$$8^{- x} \left(- \log{\left(8 \right)}^{3} \sin{\left(x \right)} + 3 \log{\left(8 \right)} \sin{\left(x \right)} - \cos{\left(x \right)} + 3 \log{\left(8 \right)}^{2} \cos{\left(x \right)}\right)$$