Mister Exam

Other calculators


y=sin(x)/8^x

Derivative of y=sin(x)/8^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(x)
------
   x  
  8   
$$\frac{\sin{\left(x \right)}}{8^{x}}$$
sin(x)/8^x
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 -x           -x              
8  *cos(x) - 8  *log(8)*sin(x)
$$- 8^{- x} \log{\left(8 \right)} \sin{\left(x \right)} + 8^{- x} \cos{\left(x \right)}$$
The second derivative [src]
 -x /             2                            \
8  *\-sin(x) + log (8)*sin(x) - 2*cos(x)*log(8)/
$$8^{- x} \left(- \sin{\left(x \right)} + \log{\left(8 \right)}^{2} \sin{\left(x \right)} - 2 \log{\left(8 \right)} \cos{\left(x \right)}\right)$$
The third derivative [src]
 -x /             3                  2                            \
8  *\-cos(x) - log (8)*sin(x) + 3*log (8)*cos(x) + 3*log(8)*sin(x)/
$$8^{- x} \left(- \log{\left(8 \right)}^{3} \sin{\left(x \right)} + 3 \log{\left(8 \right)} \sin{\left(x \right)} - \cos{\left(x \right)} + 3 \log{\left(8 \right)}^{2} \cos{\left(x \right)}\right)$$
The graph
Derivative of y=sin(x)/8^x