Mister Exam

Other calculators


y=sin(2x^2-3)

Derivative of y=sin(2x^2-3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2    \
sin\2*x  - 3/
$$\sin{\left(2 x^{2} - 3 \right)}$$
d /   /   2    \\
--\sin\2*x  - 3//
dx               
$$\frac{d}{d x} \sin{\left(2 x^{2} - 3 \right)}$$
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       /   2    \
4*x*cos\2*x  - 3/
$$4 x \cos{\left(2 x^{2} - 3 \right)}$$
The second derivative [src]
  /     2    /        2\      /        2\\
4*\- 4*x *sin\-3 + 2*x / + cos\-3 + 2*x //
$$4 \left(- 4 x^{2} \sin{\left(2 x^{2} - 3 \right)} + \cos{\left(2 x^{2} - 3 \right)}\right)$$
The third derivative [src]
      /     /        2\      2    /        2\\
-16*x*\3*sin\-3 + 2*x / + 4*x *cos\-3 + 2*x //
$$- 16 x \left(4 x^{2} \cos{\left(2 x^{2} - 3 \right)} + 3 \sin{\left(2 x^{2} - 3 \right)}\right)$$
The graph
Derivative of y=sin(2x^2-3)