Mister Exam

You entered:

y=sin2xcosx/2

What you mean?

Derivative of y=sin2xcosx/2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(2*x)*cos(x)
---------------
       2       
$$\frac{\sin{\left(2 x \right)} \cos{\left(x \right)}}{2}$$
d /sin(2*x)*cos(x)\
--|---------------|
dx\       2       /
$$\frac{d}{d x} \frac{\sin{\left(2 x \right)} \cos{\left(x \right)}}{2}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ; to find :

      1. The derivative of cosine is negative sine:

      ; to find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                  sin(x)*sin(2*x)
cos(x)*cos(2*x) - ---------------
                         2       
$$- \frac{\sin{\left(x \right)} \sin{\left(2 x \right)}}{2} + \cos{\left(x \right)} \cos{\left(2 x \right)}$$
The second derivative [src]
 /                    5*cos(x)*sin(2*x)\
-|2*cos(2*x)*sin(x) + -----------------|
 \                            2        /
$$- (2 \sin{\left(x \right)} \cos{\left(2 x \right)} + \frac{5 \sin{\left(2 x \right)} \cos{\left(x \right)}}{2})$$
The third derivative [src]
                     13*sin(x)*sin(2*x)
-7*cos(x)*cos(2*x) + ------------------
                             2         
$$\frac{13 \sin{\left(x \right)} \sin{\left(2 x \right)}}{2} - 7 \cos{\left(x \right)} \cos{\left(2 x \right)}$$
The graph
Derivative of y=sin2xcosx/2