Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2 \ / 2 \ 4*x*cos\x + 1/*sin\x + 1/
/ / 2\ / 2\ 2 2/ 2\ 2 2/ 2\\ 4*\cos\1 + x /*sin\1 + x / - 2*x *sin \1 + x / + 2*x *cos \1 + x //
/ 2/ 2\ 2/ 2\ 2 / 2\ / 2\\ 8*x*\- 3*sin \1 + x / + 3*cos \1 + x / - 8*x *cos\1 + x /*sin\1 + x //