Mister Exam

Other calculators


y=sin^2(x^2+1)

Derivative of y=sin^2(x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/ 2    \
sin \x  + 1/
$$\sin^{2}{\left(x^{2} + 1 \right)}$$
sin(x^2 + 1)^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       / 2    \    / 2    \
4*x*cos\x  + 1/*sin\x  + 1/
$$4 x \sin{\left(x^{2} + 1 \right)} \cos{\left(x^{2} + 1 \right)}$$
The second derivative [src]
  /   /     2\    /     2\      2    2/     2\      2    2/     2\\
4*\cos\1 + x /*sin\1 + x / - 2*x *sin \1 + x / + 2*x *cos \1 + x //
$$4 \left(- 2 x^{2} \sin^{2}{\left(x^{2} + 1 \right)} + 2 x^{2} \cos^{2}{\left(x^{2} + 1 \right)} + \sin{\left(x^{2} + 1 \right)} \cos{\left(x^{2} + 1 \right)}\right)$$
The third derivative [src]
    /       2/     2\        2/     2\      2    /     2\    /     2\\
8*x*\- 3*sin \1 + x / + 3*cos \1 + x / - 8*x *cos\1 + x /*sin\1 + x //
$$8 x \left(- 8 x^{2} \sin{\left(x^{2} + 1 \right)} \cos{\left(x^{2} + 1 \right)} - 3 \sin^{2}{\left(x^{2} + 1 \right)} + 3 \cos^{2}{\left(x^{2} + 1 \right)}\right)$$
The graph
Derivative of y=sin^2(x^2+1)