Mister Exam

Other calculators


y=sin^2(x)+tg(2x)*cos(x)

Derivative of y=sin^2(x)+tg(2x)*cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2                     
sin (x) + tan(2*x)*cos(x)
$$\sin^{2}{\left(x \right)} + \cos{\left(x \right)} \tan{\left(2 x \right)}$$
d /   2                     \
--\sin (x) + tan(2*x)*cos(x)/
dx                           
$$\frac{d}{d x} \left(\sin^{2}{\left(x \right)} + \cos{\left(x \right)} \tan{\left(2 x \right)}\right)$$
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    4. Apply the product rule:

      ; to find :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      ; to find :

      1. The derivative of cosine is negative sine:

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/         2     \                                           
\2 + 2*tan (2*x)/*cos(x) - sin(x)*tan(2*x) + 2*cos(x)*sin(x)
$$\left(2 \tan^{2}{\left(2 x \right)} + 2\right) \cos{\left(x \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \tan{\left(2 x \right)}$$
The second derivative [src]
       2           2                          /       2     \            /       2     \                
- 2*sin (x) + 2*cos (x) - cos(x)*tan(2*x) - 4*\1 + tan (2*x)/*sin(x) + 8*\1 + tan (2*x)/*cos(x)*tan(2*x)
$$- 4 \left(\tan^{2}{\left(2 x \right)} + 1\right) \sin{\left(x \right)} + 8 \left(\tan^{2}{\left(2 x \right)} + 1\right) \cos{\left(x \right)} \tan{\left(2 x \right)} - 2 \sin^{2}{\left(x \right)} + 2 \cos^{2}{\left(x \right)} - \cos{\left(x \right)} \tan{\left(2 x \right)}$$
The third derivative [src]
                                                                                 2                                                                                  
                                      /       2     \             /       2     \              /       2     \                         2      /       2     \       
sin(x)*tan(2*x) - 8*cos(x)*sin(x) - 6*\1 + tan (2*x)/*cos(x) + 16*\1 + tan (2*x)/ *cos(x) - 24*\1 + tan (2*x)/*sin(x)*tan(2*x) + 32*tan (2*x)*\1 + tan (2*x)/*cos(x)
$$16 \left(\tan^{2}{\left(2 x \right)} + 1\right)^{2} \cos{\left(x \right)} - 24 \left(\tan^{2}{\left(2 x \right)} + 1\right) \sin{\left(x \right)} \tan{\left(2 x \right)} + 32 \left(\tan^{2}{\left(2 x \right)} + 1\right) \cos{\left(x \right)} \tan^{2}{\left(2 x \right)} - 6 \left(\tan^{2}{\left(2 x \right)} + 1\right) \cos{\left(x \right)} - 8 \sin{\left(x \right)} \cos{\left(x \right)} + \sin{\left(x \right)} \tan{\left(2 x \right)}$$
The graph
Derivative of y=sin^2(x)+tg(2x)*cos(x)