Mister Exam

Other calculators


y=sin^3(x/2)

Derivative of y=sin^3(x/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3/x\
sin |-|
    \2/
$$\sin^{3}{\left(\frac{x}{2} \right)}$$
sin(x/2)^3
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     2/x\    /x\
3*sin |-|*cos|-|
      \2/    \2/
----------------
       2        
$$\frac{3 \sin^{2}{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}}{2}$$
The second derivative [src]
  /     2/x\        2/x\\    /x\
3*|- sin |-| + 2*cos |-||*sin|-|
  \      \2/         \2//    \2/
--------------------------------
               4                
$$\frac{3 \left(- \sin^{2}{\left(\frac{x}{2} \right)} + 2 \cos^{2}{\left(\frac{x}{2} \right)}\right) \sin{\left(\frac{x}{2} \right)}}{4}$$
The third derivative [src]
  /       2/x\        2/x\\    /x\
3*|- 7*sin |-| + 2*cos |-||*cos|-|
  \        \2/         \2//    \2/
----------------------------------
                8                 
$$\frac{3 \left(- 7 \sin^{2}{\left(\frac{x}{2} \right)} + 2 \cos^{2}{\left(\frac{x}{2} \right)}\right) \cos{\left(\frac{x}{2} \right)}}{8}$$
The graph
Derivative of y=sin^3(x/2)