Mister Exam

Other calculators


y=sin^3(7x)/ln(4x+5)

Derivative of y=sin^3(7x)/ln(4x+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    3       
 sin (7*x)  
------------
log(4*x + 5)
$$\frac{\sin^{3}{\left(7 x \right)}}{\log{\left(4 x + 5 \right)}}$$
sin(7*x)^3/log(4*x + 5)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
             3                    2              
        4*sin (7*x)         21*sin (7*x)*cos(7*x)
- ----------------------- + ---------------------
               2                 log(4*x + 5)    
  (4*x + 5)*log (4*x + 5)                        
$$\frac{21 \sin^{2}{\left(7 x \right)} \cos{\left(7 x \right)}}{\log{\left(4 x + 5 \right)}} - \frac{4 \sin^{3}{\left(7 x \right)}}{\left(4 x + 5\right) \log{\left(4 x + 5 \right)}^{2}}$$
The second derivative [src]
/                                                                 2      /         2      \\         
|                                                           16*sin (7*x)*|1 + ------------||         
|         2               2        168*cos(7*x)*sin(7*x)                 \    log(5 + 4*x)/|         
|- 147*sin (7*x) + 294*cos (7*x) - ---------------------- + -------------------------------|*sin(7*x)
|                                  (5 + 4*x)*log(5 + 4*x)                2                 |         
\                                                               (5 + 4*x) *log(5 + 4*x)    /         
-----------------------------------------------------------------------------------------------------
                                             log(5 + 4*x)                                            
$$\frac{\left(\frac{16 \left(1 + \frac{2}{\log{\left(4 x + 5 \right)}}\right) \sin^{2}{\left(7 x \right)}}{\left(4 x + 5\right)^{2} \log{\left(4 x + 5 \right)}} - 147 \sin^{2}{\left(7 x \right)} + 294 \cos^{2}{\left(7 x \right)} - \frac{168 \sin{\left(7 x \right)} \cos{\left(7 x \right)}}{\left(4 x + 5\right) \log{\left(4 x + 5 \right)}}\right) \sin{\left(7 x \right)}}{\log{\left(4 x + 5 \right)}}$$
The third derivative [src]
                                                       3      /         3               3      \                                                                                       
                                                128*sin (7*x)*|1 + ------------ + -------------|                                                     2      /         2      \         
                                                              |    log(5 + 4*x)      2         |        /   2             2     \            1008*sin (7*x)*|1 + ------------|*cos(7*x)
       /       2             2     \                          \                   log (5 + 4*x)/   1764*\sin (7*x) - 2*cos (7*x)/*sin(7*x)                  \    log(5 + 4*x)/         
- 1029*\- 2*cos (7*x) + 7*sin (7*x)/*cos(7*x) - ------------------------------------------------ + --------------------------------------- + ------------------------------------------
                                                                     3                                      (5 + 4*x)*log(5 + 4*x)                             2                       
                                                            (5 + 4*x) *log(5 + 4*x)                                                                   (5 + 4*x) *log(5 + 4*x)          
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                      log(5 + 4*x)                                                                                     
$$\frac{\frac{1008 \left(1 + \frac{2}{\log{\left(4 x + 5 \right)}}\right) \sin^{2}{\left(7 x \right)} \cos{\left(7 x \right)}}{\left(4 x + 5\right)^{2} \log{\left(4 x + 5 \right)}} - 1029 \left(7 \sin^{2}{\left(7 x \right)} - 2 \cos^{2}{\left(7 x \right)}\right) \cos{\left(7 x \right)} + \frac{1764 \left(\sin^{2}{\left(7 x \right)} - 2 \cos^{2}{\left(7 x \right)}\right) \sin{\left(7 x \right)}}{\left(4 x + 5\right) \log{\left(4 x + 5 \right)}} - \frac{128 \left(1 + \frac{3}{\log{\left(4 x + 5 \right)}} + \frac{3}{\log{\left(4 x + 5 \right)}^{2}}\right) \sin^{3}{\left(7 x \right)}}{\left(4 x + 5\right)^{3} \log{\left(4 x + 5 \right)}}}{\log{\left(4 x + 5 \right)}}$$
The graph
Derivative of y=sin^3(7x)/ln(4x+5)