4/ 3\ sin \5 - x /
d / 4/ 3\\ --\sin \5 - x // dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
2 3/ 3\ / 3\ -12*x *sin \5 - x /*cos\-5 + x /
2/ 3\ / 3 2/ 3\ / 3\ / 3\ 3 2/ 3\\ 12*x*sin \-5 + x /*\- 3*x *sin \-5 + x / + 2*cos\-5 + x /*sin\-5 + x / + 9*x *cos \-5 + x //
/ 2/ 3\ / 3\ 3 3/ 3\ 6 3/ 3\ 6 2/ 3\ / 3\ 3 2/ 3\ / 3\\ / 3\ 24*\sin \-5 + x /*cos\-5 + x / - 9*x *sin \-5 + x / + 27*x *cos \-5 + x / - 45*x *sin \-5 + x /*cos\-5 + x / + 27*x *cos \-5 + x /*sin\-5 + x //*sin\-5 + x /