Mister Exam

Other calculators


y=sin^4(5-x^3)

Derivative of y=sin^4(5-x^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4/     3\
sin \5 - x /
$$\sin^{4}{\left(- x^{3} + 5 \right)}$$
d /   4/     3\\
--\sin \5 - x //
dx              
$$\frac{d}{d x} \sin^{4}{\left(- x^{3} + 5 \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     2    3/     3\    /      3\
-12*x *sin \5 - x /*cos\-5 + x /
$$- 12 x^{2} \sin^{3}{\left(- x^{3} + 5 \right)} \cos{\left(x^{3} - 5 \right)}$$
The second derivative [src]
        2/      3\ /     3    2/      3\        /      3\    /      3\      3    2/      3\\
12*x*sin \-5 + x /*\- 3*x *sin \-5 + x / + 2*cos\-5 + x /*sin\-5 + x / + 9*x *cos \-5 + x //
$$12 x \left(- 3 x^{3} \sin^{2}{\left(x^{3} - 5 \right)} + 9 x^{3} \cos^{2}{\left(x^{3} - 5 \right)} + 2 \sin{\left(x^{3} - 5 \right)} \cos{\left(x^{3} - 5 \right)}\right) \sin^{2}{\left(x^{3} - 5 \right)}$$
The third derivative [src]
   /   2/      3\    /      3\      3    3/      3\       6    3/      3\       6    2/      3\    /      3\       3    2/      3\    /      3\\    /      3\
24*\sin \-5 + x /*cos\-5 + x / - 9*x *sin \-5 + x / + 27*x *cos \-5 + x / - 45*x *sin \-5 + x /*cos\-5 + x / + 27*x *cos \-5 + x /*sin\-5 + x //*sin\-5 + x /
$$24 \left(- 45 x^{6} \sin^{2}{\left(x^{3} - 5 \right)} \cos{\left(x^{3} - 5 \right)} + 27 x^{6} \cos^{3}{\left(x^{3} - 5 \right)} - 9 x^{3} \sin^{3}{\left(x^{3} - 5 \right)} + 27 x^{3} \sin{\left(x^{3} - 5 \right)} \cos^{2}{\left(x^{3} - 5 \right)} + \sin^{2}{\left(x^{3} - 5 \right)} \cos{\left(x^{3} - 5 \right)}\right) \sin{\left(x^{3} - 5 \right)}$$
The graph
Derivative of y=sin^4(5-x^3)