Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$100 \sin^{99}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
98 / 2 2 \
100*sin (x)*\- sin (x) + 99*cos (x)/
$$100 \left(- \sin^{2}{\left(x \right)} + 99 \cos^{2}{\left(x \right)}\right) \sin^{98}{\left(x \right)}$$
The third derivative
[src]
97 / 2 2 \
200*sin (x)*\- 149*sin (x) + 4851*cos (x)/*cos(x)
$$200 \left(- 149 \sin^{2}{\left(x \right)} + 4851 \cos^{2}{\left(x \right)}\right) \sin^{97}{\left(x \right)} \cos{\left(x \right)}$$