Mister Exam

Other calculators


y=sin(3x/(x^3+1))

Derivative of y=sin(3x/(x^3+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 3*x  \
sin|------|
   | 3    |
   \x  + 1/
$$\sin{\left(\frac{3 x}{x^{3} + 1} \right)}$$
sin((3*x)/(x^3 + 1))
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
/               3  \            
|  3         9*x   |    / 3*x  \
|------ - ---------|*cos|------|
| 3               2|    | 3    |
|x  + 1   / 3    \ |    \x  + 1/
\         \x  + 1/ /            
$$\left(- \frac{9 x^{3}}{\left(x^{3} + 1\right)^{2}} + \frac{3}{x^{3} + 1}\right) \cos{\left(\frac{3 x}{x^{3} + 1} \right)}$$
The second derivative [src]
  /               2                                             \
  |  /         3 \                     /         3 \            |
  |  |      3*x  |     / 3*x  \      2 |      3*x  |    / 3*x  \|
9*|- |-1 + ------| *sin|------| + 2*x *|-2 + ------|*cos|------||
  |  |          3|     |     3|        |          3|    |     3||
  \  \     1 + x /     \1 + x /        \     1 + x /    \1 + x //
-----------------------------------------------------------------
                                    2                            
                            /     3\                             
                            \1 + x /                             
$$\frac{9 \left(2 x^{2} \left(\frac{3 x^{3}}{x^{3} + 1} - 2\right) \cos{\left(\frac{3 x}{x^{3} + 1} \right)} - \left(\frac{3 x^{3}}{x^{3} + 1} - 1\right)^{2} \sin{\left(\frac{3 x}{x^{3} + 1} \right)}\right)}{\left(x^{3} + 1\right)^{2}}$$
The third derivative [src]
  /                                                            3                                                            \
  |                                               /         3 \                      /         3 \ /         3 \            |
  |                                               |      3*x  |     / 3*x  \       2 |      3*x  | |      3*x  |    / 3*x  \|
  |                                             3*|-1 + ------| *cos|------|   18*x *|-1 + ------|*|-2 + ------|*sin|------||
  |      /        3          6  \                 |          3|     |     3|         |          3| |          3|    |     3||
  |      |    27*x       27*x   |    / 3*x  \     \     1 + x /     \1 + x /         \     1 + x / \     1 + x /    \1 + x /|
9*|- 2*x*|4 - ------ + ---------|*cos|------| + ---------------------------- + ---------------------------------------------|
  |      |         3           2|    |     3|                   3                                       3                   |
  |      |    1 + x    /     3\ |    \1 + x /              1 + x                                   1 + x                    |
  \      \             \1 + x / /                                                                                           /
-----------------------------------------------------------------------------------------------------------------------------
                                                                  2                                                          
                                                          /     3\                                                           
                                                          \1 + x /                                                           
$$\frac{9 \left(\frac{18 x^{2} \left(\frac{3 x^{3}}{x^{3} + 1} - 2\right) \left(\frac{3 x^{3}}{x^{3} + 1} - 1\right) \sin{\left(\frac{3 x}{x^{3} + 1} \right)}}{x^{3} + 1} - 2 x \left(\frac{27 x^{6}}{\left(x^{3} + 1\right)^{2}} - \frac{27 x^{3}}{x^{3} + 1} + 4\right) \cos{\left(\frac{3 x}{x^{3} + 1} \right)} + \frac{3 \left(\frac{3 x^{3}}{x^{3} + 1} - 1\right)^{3} \cos{\left(\frac{3 x}{x^{3} + 1} \right)}}{x^{3} + 1}\right)}{\left(x^{3} + 1\right)^{2}}$$
The graph
Derivative of y=sin(3x/(x^3+1))