/ 3*x \ sin|------| | 3 | \x + 1/
sin((3*x)/(x^3 + 1))
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/ 3 \ | 3 9*x | / 3*x \ |------ - ---------|*cos|------| | 3 2| | 3 | |x + 1 / 3 \ | \x + 1/ \ \x + 1/ /
/ 2 \
| / 3 \ / 3 \ |
| | 3*x | / 3*x \ 2 | 3*x | / 3*x \|
9*|- |-1 + ------| *sin|------| + 2*x *|-2 + ------|*cos|------||
| | 3| | 3| | 3| | 3||
\ \ 1 + x / \1 + x / \ 1 + x / \1 + x //
-----------------------------------------------------------------
2
/ 3\
\1 + x /
/ 3 \
| / 3 \ / 3 \ / 3 \ |
| | 3*x | / 3*x \ 2 | 3*x | | 3*x | / 3*x \|
| 3*|-1 + ------| *cos|------| 18*x *|-1 + ------|*|-2 + ------|*sin|------||
| / 3 6 \ | 3| | 3| | 3| | 3| | 3||
| | 27*x 27*x | / 3*x \ \ 1 + x / \1 + x / \ 1 + x / \ 1 + x / \1 + x /|
9*|- 2*x*|4 - ------ + ---------|*cos|------| + ---------------------------- + ---------------------------------------------|
| | 3 2| | 3| 3 3 |
| | 1 + x / 3\ | \1 + x / 1 + x 1 + x |
\ \ \1 + x / / /
-----------------------------------------------------------------------------------------------------------------------------
2
/ 3\
\1 + x /