sin(t) ------------ 1 + 2*cos(t)
sin(t)/(1 + 2*cos(t))
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
cos(t) 2*sin (t)
------------ + ---------------
1 + 2*cos(t) 2
(1 + 2*cos(t))
/ / 2 \ \
| | 4*sin (t) | |
| 2*|------------ + cos(t)| |
| \1 + 2*cos(t) / 4*cos(t) |
|-1 + ------------------------- + ------------|*sin(t)
\ 1 + 2*cos(t) 1 + 2*cos(t)/
------------------------------------------------------
1 + 2*cos(t)
/ 2 \
2 | 12*cos(t) 24*sin (t) | / 2 \
2*sin (t)*|-1 + ------------ + ---------------| | 4*sin (t) |
2 | 1 + 2*cos(t) 2| 6*|------------ + cos(t)|*cos(t)
6*sin (t) \ (1 + 2*cos(t)) / \1 + 2*cos(t) /
-cos(t) - ------------ + ----------------------------------------------- + --------------------------------
1 + 2*cos(t) 1 + 2*cos(t) 1 + 2*cos(t)
-----------------------------------------------------------------------------------------------------------
1 + 2*cos(t)