Mister Exam

Other calculators


y=sin(t)/(1+2cos(t))

Derivative of y=sin(t)/(1+2cos(t))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   sin(t)   
------------
1 + 2*cos(t)
$$\frac{\sin{\left(t \right)}}{2 \cos{\left(t \right)} + 1}$$
sin(t)/(1 + 2*cos(t))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                       2      
   cos(t)         2*sin (t)   
------------ + ---------------
1 + 2*cos(t)                 2
               (1 + 2*cos(t)) 
$$\frac{\cos{\left(t \right)}}{2 \cos{\left(t \right)} + 1} + \frac{2 \sin^{2}{\left(t \right)}}{\left(2 \cos{\left(t \right)} + 1\right)^{2}}$$
The second derivative [src]
/       /      2              \               \       
|       | 4*sin (t)           |               |       
|     2*|------------ + cos(t)|               |       
|       \1 + 2*cos(t)         /     4*cos(t)  |       
|-1 + ------------------------- + ------------|*sin(t)
\            1 + 2*cos(t)         1 + 2*cos(t)/       
------------------------------------------------------
                     1 + 2*cos(t)                     
$$\frac{\left(\frac{2 \left(\cos{\left(t \right)} + \frac{4 \sin^{2}{\left(t \right)}}{2 \cos{\left(t \right)} + 1}\right)}{2 \cos{\left(t \right)} + 1} - 1 + \frac{4 \cos{\left(t \right)}}{2 \cos{\left(t \right)} + 1}\right) \sin{\left(t \right)}}{2 \cos{\left(t \right)} + 1}$$
The third derivative [src]
                                   /                             2     \                                   
                              2    |      12*cos(t)        24*sin (t)  |     /      2              \       
                         2*sin (t)*|-1 + ------------ + ---------------|     | 4*sin (t)           |       
                2                  |     1 + 2*cos(t)                 2|   6*|------------ + cos(t)|*cos(t)
           6*sin (t)               \                    (1 + 2*cos(t)) /     \1 + 2*cos(t)         /       
-cos(t) - ------------ + ----------------------------------------------- + --------------------------------
          1 + 2*cos(t)                     1 + 2*cos(t)                              1 + 2*cos(t)          
-----------------------------------------------------------------------------------------------------------
                                                1 + 2*cos(t)                                               
$$\frac{\frac{6 \left(\cos{\left(t \right)} + \frac{4 \sin^{2}{\left(t \right)}}{2 \cos{\left(t \right)} + 1}\right) \cos{\left(t \right)}}{2 \cos{\left(t \right)} + 1} - \cos{\left(t \right)} + \frac{2 \left(-1 + \frac{12 \cos{\left(t \right)}}{2 \cos{\left(t \right)} + 1} + \frac{24 \sin^{2}{\left(t \right)}}{\left(2 \cos{\left(t \right)} + 1\right)^{2}}\right) \sin^{2}{\left(t \right)}}{2 \cos{\left(t \right)} + 1} - \frac{6 \sin^{2}{\left(t \right)}}{2 \cos{\left(t \right)} + 1}}{2 \cos{\left(t \right)} + 1}$$
The graph
Derivative of y=sin(t)/(1+2cos(t))