Mister Exam

Other calculators


y=sin^2x-cos^2x

Derivative of y=sin^2x-cos^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2         2   
sin (x) - cos (x)
sin2(x)cos2(x)\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}
Detail solution
  1. Differentiate sin2(x)cos2(x)\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)} term by term:

    1. Let u=sin(x)u = \sin{\left(x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result of the chain rule is:

      2sin(x)cos(x)2 \sin{\left(x \right)} \cos{\left(x \right)}

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=cos(x)u = \cos{\left(x \right)}.

      2. Apply the power rule: u2u^{2} goes to 2u2 u

      3. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        The result of the chain rule is:

        2sin(x)cos(x)- 2 \sin{\left(x \right)} \cos{\left(x \right)}

      So, the result is: 2sin(x)cos(x)2 \sin{\left(x \right)} \cos{\left(x \right)}

    The result is: 4sin(x)cos(x)4 \sin{\left(x \right)} \cos{\left(x \right)}

  2. Now simplify:

    2sin(2x)2 \sin{\left(2 x \right)}


The answer is:

2sin(2x)2 \sin{\left(2 x \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
4*cos(x)*sin(x)
4sin(x)cos(x)4 \sin{\left(x \right)} \cos{\left(x \right)}
The second derivative [src]
  /   2         2   \
4*\cos (x) - sin (x)/
4(sin2(x)+cos2(x))4 \left(- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)
The third derivative [src]
-16*cos(x)*sin(x)
16sin(x)cos(x)- 16 \sin{\left(x \right)} \cos{\left(x \right)}
The graph
Derivative of y=sin^2x-cos^2x