Mister Exam

Derivative of y=sin^2tg(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2          
sin (x)*tan(x)
$$\sin^{2}{\left(x \right)} \tan{\left(x \right)}$$
d /   2          \
--\sin (x)*tan(x)/
dx                
$$\frac{d}{d x} \sin^{2}{\left(x \right)} \tan{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   2    /       2   \                         
sin (x)*\1 + tan (x)/ + 2*cos(x)*sin(x)*tan(x)
$$\left(\tan^{2}{\left(x \right)} + 1\right) \sin^{2}{\left(x \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)} \tan{\left(x \right)}$$
The second derivative [src]
  /  /   2         2   \             2    /       2   \            /       2   \              \
2*\- \sin (x) - cos (x)/*tan(x) + sin (x)*\1 + tan (x)/*tan(x) + 2*\1 + tan (x)/*cos(x)*sin(x)/
$$2 \left(- \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \tan{\left(x \right)} + \left(\tan^{2}{\left(x \right)} + 1\right) \sin^{2}{\left(x \right)} \tan{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \cos{\left(x \right)}\right)$$
The third derivative [src]
  /    /       2   \ /   2         2   \      2    /       2   \ /         2   \                              /       2   \                     \
2*\- 3*\1 + tan (x)/*\sin (x) - cos (x)/ + sin (x)*\1 + tan (x)/*\1 + 3*tan (x)/ - 4*cos(x)*sin(x)*tan(x) + 6*\1 + tan (x)/*cos(x)*sin(x)*tan(x)/
$$2 \left(- 3 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) + \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) \sin^{2}{\left(x \right)} + 6 \left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \cos{\left(x \right)} \tan{\left(x \right)} - 4 \sin{\left(x \right)} \cos{\left(x \right)} \tan{\left(x \right)}\right)$$
The graph
Derivative of y=sin^2tg(x)