Detail solution
-
Apply the product rule:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
31 24 33 22
- 32*cos (x)*sin (x) + 23*cos (x)*sin (x)
$$- 32 \sin^{24}{\left(x \right)} \cos^{31}{\left(x \right)} + 23 \sin^{22}{\left(x \right)} \cos^{33}{\left(x \right)}$$
The second derivative
[src]
30 21 / 2 2 2 / 2 2 \ 2 / 2 2 \\
cos (x)*sin (x)*\- 1472*cos (x)*sin (x) - 23*cos (x)*\sin (x) - 22*cos (x)/ + 32*sin (x)*\- cos (x) + 31*sin (x)//
$$\left(- 23 \left(\sin^{2}{\left(x \right)} - 22 \cos^{2}{\left(x \right)}\right) \cos^{2}{\left(x \right)} + 32 \cdot \left(31 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} - 1472 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\right) \sin^{21}{\left(x \right)} \cos^{30}{\left(x \right)}$$
The third derivative
[src]
29 20 / 4 / 2 2 \ 4 / 2 2 \ 2 2 / 2 2 \ 2 2 / 2 2 \\
cos (x)*sin (x)*\- 64*sin (x)*\- 47*cos (x) + 465*sin (x)/ - 23*cos (x)*\- 462*cos (x) + 67*sin (x)/ + 2208*cos (x)*sin (x)*\sin (x) - 22*cos (x)/ + 2208*cos (x)*sin (x)*\- cos (x) + 31*sin (x)//
$$\left(2208 \left(\sin^{2}{\left(x \right)} - 22 \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} + 2208 \cdot \left(31 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} - 23 \cdot \left(67 \sin^{2}{\left(x \right)} - 462 \cos^{2}{\left(x \right)}\right) \cos^{4}{\left(x \right)} - 64 \cdot \left(465 \sin^{2}{\left(x \right)} - 47 \cos^{2}{\left(x \right)}\right) \sin^{4}{\left(x \right)}\right) \sin^{20}{\left(x \right)} \cos^{29}{\left(x \right)}$$