Mister Exam

Other calculators


y=sin^23xcos^32x

Derivative of y=sin^23xcos^32x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   23       32   
sin  (x)*cos  (x)
$$\sin^{23}{\left(x \right)} \cos^{32}{\left(x \right)}$$
d /   23       32   \
--\sin  (x)*cos  (x)/
dx                   
$$\frac{d}{d x} \sin^{23}{\left(x \right)} \cos^{32}{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        31       24            33       22   
- 32*cos  (x)*sin  (x) + 23*cos  (x)*sin  (x)
$$- 32 \sin^{24}{\left(x \right)} \cos^{31}{\left(x \right)} + 23 \sin^{22}{\left(x \right)} \cos^{33}{\left(x \right)}$$
The second derivative [src]
   30       21    /          2       2            2    /   2            2   \         2    /     2            2   \\
cos  (x)*sin  (x)*\- 1472*cos (x)*sin (x) - 23*cos (x)*\sin (x) - 22*cos (x)/ + 32*sin (x)*\- cos (x) + 31*sin (x)//
$$\left(- 23 \left(\sin^{2}{\left(x \right)} - 22 \cos^{2}{\left(x \right)}\right) \cos^{2}{\left(x \right)} + 32 \cdot \left(31 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} - 1472 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\right) \sin^{21}{\left(x \right)} \cos^{30}{\left(x \right)}$$
The third derivative [src]
   29       20    /        4    /        2             2   \         4    /         2            2   \           2       2    /   2            2   \           2       2    /     2            2   \\
cos  (x)*sin  (x)*\- 64*sin (x)*\- 47*cos (x) + 465*sin (x)/ - 23*cos (x)*\- 462*cos (x) + 67*sin (x)/ + 2208*cos (x)*sin (x)*\sin (x) - 22*cos (x)/ + 2208*cos (x)*sin (x)*\- cos (x) + 31*sin (x)//
$$\left(2208 \left(\sin^{2}{\left(x \right)} - 22 \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} + 2208 \cdot \left(31 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} - 23 \cdot \left(67 \sin^{2}{\left(x \right)} - 462 \cos^{2}{\left(x \right)}\right) \cos^{4}{\left(x \right)} - 64 \cdot \left(465 \sin^{2}{\left(x \right)} - 47 \cos^{2}{\left(x \right)}\right) \sin^{4}{\left(x \right)}\right) \sin^{20}{\left(x \right)} \cos^{29}{\left(x \right)}$$
The graph
Derivative of y=sin^23xcos^32x