Mister Exam

Derivative of y=sin(ln5x²+2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2           \
sin\log (5*x) + 2*x/
$$\sin{\left(2 x + \log{\left(5 x \right)}^{2} \right)}$$
sin(log(5*x)^2 + 2*x)
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of is .

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        The result of the chain rule is:

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
/    2*log(5*x)\    /   2           \
|2 + ----------|*cos\log (5*x) + 2*x/
\        x     /                     
$$\left(2 + \frac{2 \log{\left(5 x \right)}}{x}\right) \cos{\left(2 x + \log{\left(5 x \right)}^{2} \right)}$$
The second derivative [src]
   /                2                                           /   2           \\
   |  /    log(5*x)\     /   2           \   (-1 + log(5*x))*cos\log (5*x) + 2*x/|
-2*|2*|1 + --------| *sin\log (5*x) + 2*x/ + ------------------------------------|
   |  \       x    /                                           2                 |
   \                                                          x                  /
$$- 2 \left(2 \left(1 + \frac{\log{\left(5 x \right)}}{x}\right)^{2} \sin{\left(2 x + \log{\left(5 x \right)}^{2} \right)} + \frac{\left(\log{\left(5 x \right)} - 1\right) \cos{\left(2 x + \log{\left(5 x \right)}^{2} \right)}}{x^{2}}\right)$$
The third derivative [src]
  /                                                                                      /    log(5*x)\                    /   2           \\
  |                  3                                             /   2           \   6*|1 + --------|*(-1 + log(5*x))*sin\log (5*x) + 2*x/|
  |    /    log(5*x)\     /   2           \   (-3 + 2*log(5*x))*cos\log (5*x) + 2*x/     \       x    /                                     |
2*|- 4*|1 + --------| *cos\log (5*x) + 2*x/ + -------------------------------------- + -----------------------------------------------------|
  |    \       x    /                                            3                                                2                         |
  \                                                             x                                                x                          /
$$2 \left(- 4 \left(1 + \frac{\log{\left(5 x \right)}}{x}\right)^{3} \cos{\left(2 x + \log{\left(5 x \right)}^{2} \right)} + \frac{6 \left(1 + \frac{\log{\left(5 x \right)}}{x}\right) \left(\log{\left(5 x \right)} - 1\right) \sin{\left(2 x + \log{\left(5 x \right)}^{2} \right)}}{x^{2}} + \frac{\left(2 \log{\left(5 x \right)} - 3\right) \cos{\left(2 x + \log{\left(5 x \right)}^{2} \right)}}{x^{3}}\right)$$
The graph
Derivative of y=sin(ln5x²+2x)