Mister Exam

Other calculators


y=sin^3x+cos^3x

Derivative of y=sin^3x+cos^3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3         3   
sin (x) + cos (x)
sin3(x)+cos3(x)\sin^{3}{\left(x \right)} + \cos^{3}{\left(x \right)}
sin(x)^3 + cos(x)^3
Detail solution
  1. Differentiate sin3(x)+cos3(x)\sin^{3}{\left(x \right)} + \cos^{3}{\left(x \right)} term by term:

    1. Let u=sin(x)u = \sin{\left(x \right)}.

    2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

    3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result of the chain rule is:

      3sin2(x)cos(x)3 \sin^{2}{\left(x \right)} \cos{\left(x \right)}

    4. Let u=cos(x)u = \cos{\left(x \right)}.

    5. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

    6. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      The result of the chain rule is:

      3sin(x)cos2(x)- 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)}

    The result is: 3sin2(x)cos(x)3sin(x)cos2(x)3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} - 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)}

  2. Now simplify:

    32sin(x)cos(x)cos(x+π4)- 3 \sqrt{2} \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(x + \frac{\pi}{4} \right)}


The answer is:

32sin(x)cos(x)cos(x+π4)- 3 \sqrt{2} \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(x + \frac{\pi}{4} \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
       2                  2          
- 3*cos (x)*sin(x) + 3*sin (x)*cos(x)
3sin2(x)cos(x)3sin(x)cos2(x)3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} - 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)}
The second derivative [src]
  /     3         3           2                  2          \
3*\- cos (x) - sin (x) + 2*cos (x)*sin(x) + 2*sin (x)*cos(x)/
3(sin3(x)+2sin2(x)cos(x)+2sin(x)cos2(x)cos3(x))3 \left(- \sin^{3}{\left(x \right)} + 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)} - \cos^{3}{\left(x \right)}\right)
The third derivative [src]
  /       3           3           2                  2          \
3*\- 2*sin (x) + 2*cos (x) - 7*sin (x)*cos(x) + 7*cos (x)*sin(x)/
3(2sin3(x)7sin2(x)cos(x)+7sin(x)cos2(x)+2cos3(x))3 \left(- 2 \sin^{3}{\left(x \right)} - 7 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + 7 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + 2 \cos^{3}{\left(x \right)}\right)
The graph
Derivative of y=sin^3x+cos^3x