Mister Exam

Other calculators


y=sin(7x-5)*ln(4x+5)

Derivative of y=sin(7x-5)*ln(4x+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(7*x - 5)*log(4*x + 5)
$$\log{\left(4 x + 5 \right)} \sin{\left(7 x - 5 \right)}$$
sin(7*x - 5)*log(4*x + 5)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
4*sin(7*x - 5)                              
-------------- + 7*cos(7*x - 5)*log(4*x + 5)
   4*x + 5                                  
$$7 \log{\left(4 x + 5 \right)} \cos{\left(7 x - 5 \right)} + \frac{4 \sin{\left(7 x - 5 \right)}}{4 x + 5}$$
The second derivative [src]
                                 16*sin(-5 + 7*x)   56*cos(-5 + 7*x)
-49*log(5 + 4*x)*sin(-5 + 7*x) - ---------------- + ----------------
                                             2          5 + 4*x     
                                    (5 + 4*x)                       
$$- 49 \log{\left(4 x + 5 \right)} \sin{\left(7 x - 5 \right)} + \frac{56 \cos{\left(7 x - 5 \right)}}{4 x + 5} - \frac{16 \sin{\left(7 x - 5 \right)}}{\left(4 x + 5\right)^{2}}$$
The third derivative [src]
  588*sin(-5 + 7*x)                                    336*cos(-5 + 7*x)   128*sin(-5 + 7*x)
- ----------------- - 343*cos(-5 + 7*x)*log(5 + 4*x) - ----------------- + -----------------
       5 + 4*x                                                      2                   3   
                                                           (5 + 4*x)           (5 + 4*x)    
$$- 343 \log{\left(4 x + 5 \right)} \cos{\left(7 x - 5 \right)} - \frac{588 \sin{\left(7 x - 5 \right)}}{4 x + 5} - \frac{336 \cos{\left(7 x - 5 \right)}}{\left(4 x + 5\right)^{2}} + \frac{128 \sin{\left(7 x - 5 \right)}}{\left(4 x + 5\right)^{3}}$$
The graph
Derivative of y=sin(7x-5)*ln(4x+5)